[1] Miura, K., Furuya, H., and Suzuki, K. Variable geometry truss and its application to deployable truss and space crane arm. Acta Astronautica, 12(7/8), 599-607(1985)
[2] Miura, K. and Furuya, H. Adaptive structure concept for future space applications. AIAA Journal, 26(8), 995-1002(1988)
[3] Hughes, P. C., Sincarsin, W. G., and Carroll, K. A. Trussarm-a variable geometry truss manipulator. Journal of Intelligent Material System and Structures, 2(2), 148-160(1991)
[4] Naccarato, F. and Hughes, P. An inverse kinematics algorithm for a highly redundant variable geometry truss manipulator. Proceedings of the 3rd Annual Conference on Aerospace Computational Control, 1, 407-420(1989)
[5] Hertz, R. B. and Hughes, P. C. Forward kinematics of a 3-DOF variable-geometry-truss manipulator. Computational Kinematics, part 6, Springer, Netherlands, 241-250(1993)
[6] Furuya, H. and Higashiyama, K. Dynamics of closed linked variable geometry truss manipulators. Acta Astronautica, 36(5), 251-259(1995)
[7] Huang, S. Y., Natori, M. C., and Miura, K. Motion control of free-floating variable geometry truss part 1:kinematics. Journal of Guidance, Control, and Dynamics, 19(4), 756-763(1996)
[8] Huang, S. Y., Natori, M. C., and Miura, K. Motion control of free-floating variable geometry truss, part 2:inverse kinematics. Journal of Guidance, Control, and Dynamics, 19(4), 764-771(1996)
[9] Tsou, P. and Shen, M. H. H. Motion control of adaptive truss structures using fuzzy rules. Computer-Aided Civil and Infrastructure Engineering, 11(4), 275-281(1996)
[10] Xu, L. J., Tian, G. Y., Duan, Y., and Yang, S. X. Inverse kinematic analysis for triple-octahedron variable-geometry truss manipulators. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 215(2), 247-251(2001)
[11] MacAreno, L. M., Angulo, C., Lopez, D., and Agirrebeitia, J. Analysis and characterization of the behavior of a variable geometry structure. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 221(11), 1427-1434(2007)
[12] Aguirrebeitia, J., Angulo, C., Macareno, L. M., and Avilé, R. A metamodeling technique for variable geometry trusses design via equivalent parametric macroelements. Journal of Mechanical Design, 131(10), 104501(2009)
[13] Bilbao, A., Avilés, R., Aguirrebeitia, J., and Bustos, I. F. Eigensensitivity-based optimal damper location in variable geometry trusses. AIAA Journal, 47(3), 576-591(2009)
[14] Bilbao, A., Avilés, R., Aguirrebeitia, J., and Bustos, I. F. Eigensensitivity analysis in variable geometry trusses. AIAA Journal, 49(7), 1555-1559(2011)
[15] Bilbao, A., Avilés, R., Aguirrebeitia, J., and Bustos, I. F. A reduced eigenproblem formulation for variable geometry trusses. Finite Elements in Analysis and Design, 50, 134-141(2012)
[16] Haug, E. J. Computer-Aided Kinematics and Dynamics of Mechanical Systems, Allyn and Bacon, Boston (1989)
[17] Wittenburg, J. Dynamics of Multibody Systems, Springer, Berlin (2007)
[18] Qi, Z. H., Xu, Y. S., Luo, X. M., and Yao, S. J. Recursive formulations for multibody systems with frictional joints based on the interaction between bodies. Multibody System Dynamics, 24(2), 133-166(2010)
[19] Liu, X. F., Li, H. Q., Chen, Y. J., and Cai, G. P. Dynamics and control of capture of a floating rigid body by a spacecraft robotic arm. Multibody System Dynamics, 33(3), 315-332(2015) |