[1] Falkovich, G., Fouxon, A., and Stepanov, M. G. Acceleration of rain initiation by cloud turbulence. nature, 419, 151-154(2002) [2] Dimotakis, P. E. Turbulent mixing. Annual Review of Fluid Mechanics, 37, 329-356(2005) [3] Wang, L. P., Wexler, A. S., and Zhou, Y. Statistical mechanical description and modelling of turbulent collision of inertial particles. Journal of Fluid Mechanics, 415, 117-153(2000) [4] Moin, P. and Mahesh, K. Direct numerical simulation:a tool in turbulence research. Annual Review of Fluid Mechanics, 30, 539-578(1998) [5] Wang, L. M., Zhou, G. F., Wang, X. W., Xiong, Q. G., and Ge, W. Direct numerical simulation of particle-fluid systems by combining time-driven hard-sphere model and lattice Boltzmann method. Particuology, 8(4), 379-382(2010) [6] Qian, Y. H., Dhumieres, D., and Lallemand, P. Lattice BGK models for Navier-Stokes equation. Europhysics Letters, 17, 479-484(1992) [7] Chen, H. D., Chen, S. Y., and Matthaeus, W. H. Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. Physical Review A, 45(8), R5339-R5342(1992) [8] Lallemand, P. and Luo, L. S. Theory of the lattice Boltzmann method:dispersion, dissipation, isotropy, Galilean invariance, and stability. Physical Review E, 61(6), 6546-6562(2000) [9] Chen, S. Y., Wang, Z., Shan, X. W., and Doolen, G. D. Lattice Boltzmann computational fluiddynamics in three dimensions. Journal of Statistical Physics, 68(3/4), 379-400(1992) [10] Peng, Y., Liao, W., Luo, L. S., and Wang, L. P. Comparison of the lattice Boltzmann and pseudospectral methods for decaying turbulence:low-order statistics. Computers and Fluids, 39(4), 568-591(2010) [11] Eggels, J. G. M. Direct and large-eddy simulation of turbulent fluid flow using the latticeBoltzmann scheme. International Journal of Heat and Fluid Flow, 17(3), 307-323(1996) [12] Kim, J., Moin, P., and Moser, R. Turbulence statistics in fully-developed channel flow at low Reynolds-number. Journal of Fluid Mechanics, 177, 133-166(1987) [13] Dorschner, B., Bosch, F., Chikatamarla, S. S., Boulouchos, K., and Karlin, I. V. Entropic multirelaxation time lattice Boltzmann model for complex flows. Journal of Fluid Mechanics, 801, 623-651(2016) [14] Wang, P., Wang, L. P., and Guo, Z. L. Comparison of the lattice Boltzmann equation and discrete unified gas-kinetic scheme methods for direct numerical simulation of decaying turbulent flows. Physical Review E, 94(4), 043304(2016) [15] D'Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P., and Luo, L. S. Multiple-relaxationtime lattice Boltzmann models in three dimensions. Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 360, 437-451(2002) [16] Alvelius, K. Random forcing of three-dimensional homogeneous turbulence. Physics of Fluids, 11(7), 1880-1889(1999) [17] Cate, A. T., Derksen, J. J., Portela, L. M., and van den Akker, H. E. A. Fully resolved simulations of colliding monodisperse spheres in forced isotropic turbulence. Journal of Fluid Mechanics, 519, 233-271(2004) [18] Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F., and Succi, S. Extended selfsimilarity in turbulent flows. Physical Review E, 48(1), 29-32(1993) [19] Pope, S. B. Turbulent Flows, Cambridge University Press, Cambridge (2000) [20] Anselmet, F., Gagne, Y., Hopfinger, E. J., and Antonia, R. A. High-order velocity structure functions in turbulent shear flows. Journal of Fluid Mechanics, 140, 63-89(1984) [21] Vincent, A. and Meneguzzi, M. The spatial structure and statistical properties of homogeneous turbulence. Journal of Fluid Mechanics, 225, 1-20(1991) [22] She, Z. S. and Leveque, E. Universal scaling laws in fully-developed turbulence. Physical Review Letters, 72(3), 336-339(1994) [23] Arneodo, A., Baudet, C., Belin, F., Benzi, R., Castaing, B., Chabaud, B., Chavarria, R., Ciliberto, S., Camussi, R., Chillà, F., Dubrulle, B., Gagne, Y., Hebral, B., Herweijer, J., Marchand, M., Maurer, J., Muzy, Z. F., Naert, A., Noullez, A., Peinke, J., Tabeling, P., van der Water, W., and Willaime, H. Structure functions in turbulence, in various flow configurations, at Reynolds number between 30 and 5000, using extended self-similarity. Europhysics Letters, 34(6), 411-416(1996) [24] De Silva, C. M., Marusic, I., Woodcock, J. D., and Meneveau, C. Scaling of second-and higherorder structure functions in turbulent boundary layers. Journal of Fluid Mechanics, 769, 654-686(2015) [25] Toschi, F., Amati, G., Succi, S., Benzi, R., and Piva, R. Intermittency and structure functions in channel flow turbulence. Physical Review Letters, 82(25), 5044-5047(1999) [26] Wang, L. P., Min, H. D., Peng, C., Geneva, N., and Guo, Z. L. A lattice-Boltzmann scheme of the Navier-Stokes equation on a three-dimensional cuboid lattice. Computers and Mathematics with Applications, 2016(2016) https://doi.org/10.1016/j.camwa.2016.06.017 [27] Amati, G., Succi, S., and Piva, R. Massively parallel lattice-Boltzmann simulation of turbulent channel flow. International Journal of Modern Physics C, 8, 869-877(1996) [28] Voth, G. A., La Porta, A., Crawford, A. M., Alexander, J., and Bodenschatz, E. Measurement of particle accelerations in fully developed turbulence. Journal of Fluid Mechanics, 469, 121-160(2002) [29] Mordant, N., Crawford, A. M., and Bodenschatz, E. Three-dimensional structure of the Lagrangian acceleration in turbulent flows. Physical Review Letters, 93(21), 214501(2004) [30] Mordant, N., Leveque, E., and Pinton, J. F. Experimental and numerical study of the Lagrangian dynamics of high Reynolds turbulence. New Journal of Physics, 6(116), 1-44(2004) [31] Bec, J., Biferale, L., Boffetta, G., Celani, A., Cencini, M., Lanotte, A., Musacchio, S., and Toschi, F. Acceleration statistics of heavy particles in turbulence. Journal of Fluid Mechanics, 550, 349-358(2006) [32] Biferale, L., Boffetta, G., Celani, A., Devenish, B. J., Lanotte, A., and Toschi, F. Multifractal statistics of Lagrangian velocity and acceleration in turbulence. Physical Review Letters, 93(6), 064502(2004) |