[1] ABGRALL, R. and CONGEDO, P. M. A semi-intrusive deterministic approach to uncertainty quantification in non-linear fluid flow problems. Journal of Computational Physics, 235, 828-845(2013) [2] SIMON, F., GUILLEN, P., SAGAUT, P., and LUCOR, D. A GPC-based approach to uncertain transonic aerodynamics. Computer Methods in Applied Mechanics and Engineering, 199, 1091- 1099(2010) [3] SEPAHVAND, K., MARBURG, S., and HARDTKE, H. J. Stochastic free vibration of orthotropic plates using generalized polynomial chaos expansion. Journal of Sound and Vibration, 331, 167- 179(2012) [4] CAPIEZ-LERNOUT, E., SOIZE, C., and MIGNOLET, M. P. Post-buckling nonlinear static and dynamical analyses of uncertain cylindrical shells and experimental validation. Computer Methods in Applied Mechanics and Engineering, 271, 210-230(2014) [5] JACQUELIN, E., ADHIKARI, S., SINOU, J. J., and FRISWELL, M. I. Polynomial chaos expansion in structural dynamics:accelerating the convergence of the first two statistical moment sequences. Journal of Sound and Vibration, 356, 144-154(2015) [6] ZHANG, J. and ELLINGWOOD, B. Effects of uncertain material properties on structural stability. Journal of Structural Engineering, 121, 705-716(1995) [7] SINGH, B. N., IYENGAR, N., and YADAV, D. Effects of random material properties on buckling of composite plates. Journal of Engineering Mechanics, 127, 873-879(2001) [8] XIU, D. and KARNIADAKIS, G. E. The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM Journal on Scientific Computing, 24, 619-644(2002) [9] XIU, D. Numerical Methods for Stochastic Computations:A Spectral Method Approach, Princeton University Press, Princeton (2010) [10] WAN, X. and KARNIADAKIS, G. E. Multi-element generalized polynomial chaos for arbitrary probability measures. SIAM Journal on Scientific Computing, 28, 901-928(2006) [11] GHANEM, R. G. and SPANOS, P. D. Stochastic Finite Elements:A Spectral Approach, Dover Publications, Inc., New York (2003) [12] XIU, D. and HESTHAVEN, J. S. High-order collocation methods for differential equations with random inputs. SIAM Journal on Scientific Computing, 27, 1118-1139(2005) [13] MA, X. and ZABARAS, N. An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. Journal of Computational Physics, 228, 3084-3113(2009) [14] GANIS, B., KLIE, H., WHEELER, M. F., WILDEY, T., YOTOV, I., and ZHANG, D. Stochastic collocation and mixed finite elements for flow in porous media. Computer Methods in Applied Mechanics and Engineering, 197, 3547-3559(2008) [15] NEGOITA, C., ZADEH, L., and ZIMMERMANN, H. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1, 3-28(1978) [16] KLIMKE, A. and WOHLMUTH, B. Computing expensive multivariate functions of fuzzy numbers using sparse grids. Fuzzy Sets and Systems, 154, 432-453(2005) [17] MOORE, R. E. Interval Analysis, Prentice-Hall Englewood Cliffs, New York (1966) [18] IMPOLLONIA, N. and MUSCOLINO, G. Interval analysis of structures with uncertain-butbounded axial stiffness. Computer Methods in Applied Mechanics and Engineering, 200, 1945-1962(2011) [19] YIN, S., YU, D., YIN, H., and XIA, B. Interval and random analysis for structure-acoustic systems with large uncertain-but-bounded parameters. Computer Methods in Applied Mechanics and Engineering, 305, 910-935(2016) [20] SOIZE, C. Random matrix theory for modeling uncertainties in computational mechanics. Computer Methods in Applied Mechanics and Engineering, 194, 1333-1366(2005) [21] SOIZE, C. Random matrix theory and non-parametric model of random uncertainties in vibration analysis. Journal of Sound and Vibration, 263, 893-916(2003) [22] XIU, D. and KARNIADAKIS, G. E. Modeling uncertainty in flow simulations via generalized polynomial chaos. Journal of Computational Physics, 187, 137-167(2003) [23] BLATMAN, G. and SUDRET, B. Adaptive sparse polynomial chaos expansion based on least angle regression. Journal of Computational Physics, 230, 2345-2367(2011) [24] ROSIĆ, B. V., LITVINENKO, A., PAJONK, O., and MATTHIES, H. G. Sampling-free linear Bayesian update of polynomial chaos representations. Journal of Computational Physics, 231, 5761-5787(2012) [25] GERRITSMA, M., VAN DER STEEN, J. B., VOS, P., and KARNIADAKIS, G. Time-dependent generalized polynomial chaos. Journal of Computational Physics, 229, 8333-8363(2010) [26] PANUNZIO, A. M., SALLES, L., and SCHWINGSHACKL, C. W. Uncertainty propagation for nonlinear vibrations:a non-intrusive approach. Journal of Sound and Vibration, 389, 309-325(2017) [27] NAJM, H. N. Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Annual Review of Fluid Mechanics, 41, 35-52(2009) [28] TOOTKABONI, M., ASADPOURE, A., and GUEST, J. K. Topology optimization of continuum structures under uncertainty-a polynomial chaos approach. Computer Methods in Applied Mechanics and Engineering, 201, 263-275(2012) [29] GHANEM, R. and GHOSH, D. Efficient characterization of the random eigenvalue problem in a polynomial chaos decomposition. International Journal for Numerical Methods in Engineering, 72, 486-504(2007) [30] PASCUAL, B. and ADHIKARI, S. Hybrid perturbation-polynomial chaos approaches to the random algebraic eigenvalue problem. Computer Methods in Applied Mechanics and Engineering, 217, 153-167(2012) [31] MANAN, A. and COOPER, J. Prediction of uncertain frequency response function bounds using polynomial chaos expansion. Journal of Sound and Vibration, 329, 3348-3358(2010) [32] PENG, Y. B., GHANEM, R., and LI, J. Polynomial chaos expansions for optimal control of nonlinear random oscillators. Journal of Sound and Vibration, 329, 3660-3678(2010) [33] WAN, X. and KARNIADAKIS, G. E. Long-term behavior of polynomial chaos in stochastic flow simulations. Computer Methods in Applied Mechanics and Engineering, 195, 5582-5596(2006) [34] ORSZAG, S. A. and BISSONNETTE, L. R. Dynamical properties of truncated Wiener-Hermite expansions. Physics of Fluids, 10, 2603-2613(1967) [35] HEUVELINE, V. and SCHICK, M. A local time-dependent generalized polynomial chaos method for stochastic dynamical systems. Preprint (2011) https://doi.org/10.11588/emclpp.2011.04.11694 [36] BECK, M. H., JÄCKLE, A., WORTH, G., and MEYER, H. D. The multiconfiguration timedependent Hartree (MCTDH) method:a highly efficient algorithm for propagating wavepackets. Physics Reports, 324, 1-105(2000) [37] DE LATHAUWER, L., DE MOOR, B., and VANDEWALLE, J. A multilinear singular value decomposition. SIAM Journal on Matrix Analysis and Applications, 21, 1253-1278(2000) [38] DE LATHAUWER, L., DE MOOR, B., and VANDEWALLE, J. On the best rank-1 and rank- (r1, r2,…, rn) approximation of higher-order tensors. SIAM Journal on Matrix Analysis and Applications, 21, 1324-1342(2000) |