[1] DORSEY, E., SHERER, T., OKUN, M., and BLOEM, B. The rise of Parkinson's disease. American Scientist, 108, 176(2020) [2] DEXTER, D. T. and JENNER, P. Parkinson disease:from pathology to molecular disease mechanisms. Free Radical Biology and Medicine, 62, 132-144(2013) [3] GALVAN, A. and WICHMANN, T. Pathophysiology of parkinsonism. Clinical Neurophysiology, 119, 1459-1474(2008) [4] RUBIN, J. E., MCINTYRE, C. C., TURNER, R. S., and WICHMANN, T. Basal ganglia activity patterns in parkinsonism and computational modeling of their downstream effects:basal ganglia activity patterns in parkinsonism. European Journal of Neuroscience, 36, 2213-2228(2012) [5] SANTANIELLO, S., GALE, J. T., and SARMA, S. V. Systems approaches to optimizing deep brain stimulation therapies in Parkinson's disease. WIREs Systems Biology and Medicine, 10, e1421(2018) [6] JAKOBS, M., LEE, D. J., and LOZANO, A. M. Modifying the progression of Alzheimer's and Parkinson's disease with deep brain stimulation. Neuropharmacology, 171, 107860(2020) [7] PLOTKIN, J. L. and GOLDBERG, J. A. Thinking outside the box (and arrow):current themes in striatal dysfunction in movement disorders. Neuroscientist, 25, 359-379(2019) [8] BAR-GAD, I., MORRIS, G., and BERGMAN, H. Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Progress in Neurobiology, 71, 439-473(2003) [9] MALLET, N., DELGADO, L., CHAZALON, M., MIGUELEZ, C., and BAUFRETON, J. Cellular and synaptic dysfunctions in Parkinson's disease:stepping out of the striatum. Cells, 8, 1005(2019) [10] DAMODARAN, S., CRESSMAN, J. R., JEDRZEJEWSKI-SZMEK, Z., and BLACKWELL, K. T. Desynchronization of fast-spiking interneurons reduces-band oscillations and imbalance in firing in the dopamine-depleted striatum. Journal of Neuroscience, 35, 1149-1159(2015) [11] ALBIN, R. L., YOUNG, A. B., and PENNEY, J. B. The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12, 366-375(1989) [12] HUMPHRIES, M. D., WOOD, R., and GURNEY, K. Dopamine-modulated dynamic cell assemblies generated by the GABAergic striatal microcircuit. Neural Networks, 22, 1174-1188(2009) [13] MANDALI, A., RENGASWAMY, M., CHAKRAVARTHY, V. S., and MOUSTAFA, A. A. A spiking basal ganglia model of synchrony, exploration and decision making. Frontiers in Neuroscience, 9, 191(2015) [14] BAHUGUNA, J., AERTSEN, A., KUMAR, A., and BLACKWELL, K. T. Existence and control of go/no-go decision transition threshold in the striatum. PLoS Computational Biology, 11, e1004233(2015) [15] MUDDAPU, V. R., MANDALI, A., CHAKRAVARTHY, V. S., and RAMASWAMY, S. A computational model of loss of dopaminergic cells in Parkinson's disease due to glutamate-induced excitotoxicity. Frontiers in Neural Circuits, 13, 11(2019) [16] HODGKIN, A. L. and HUXLEY, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. Bulletin of Mathematical Biology, 52, 25-71(1990) [17] MA, J. and TANG, J. A review for dynamics in neuron and neuronal network. Nonlinear Dynamics, 89, 1569-1578(2017) [18] MA, J., YANG, Z., YANG, L., and TANG, J. A physical view of computational neurodynamics. Journal of Zhejiang University-Science A, 20, 639-659(2019) [19] WANG, W. and WANG, R. Control strategy of central pattern generator gait movement under condition of attention selection. Applied Mathematics and Mechanics (English Edition), 37(7), 957-966(2016) https://doi.org/10.1007/s10483-016-2096-9 [20] IZHIKEVICH, E. M. Simple model of spiking neurons. IEEE Transactions on Neural Network, 14, 1569-1572(2003) [21] TERMAN, D., RUBIN, J. E., YEW, A. C., and WILSON, C. J. Activity patterns in a model for the subthalamopallidal network of the basal ganglia. Journal of Neuroscience, 22, 2963-2976(2002) [22] RUBIN, J. E. and TERMAN, D. High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16, 211-235(2004) [23] SO, R. Q., KENT, A. R., and GRILL, W. M. Relative contributions of local cell and passing fiber activation and silencing to changes in thalamic fidelity during deep brain stimulation and lesioning:a computational modeling study. Journal of Computational Neuroscience, 32, 499-519(2012) [24] BROWN, P. and WILLIAMS, D. Basal ganglia local field potential activity:character and functional significance in the human. Clinical Neurophysiology, 116, 2510-2519(2005) [25] KREITZER, A. C. Physiology and pharmacology of striatal neurons. Annual Review of Neuroscience, 32, 127-147(2009) [26] DAMODARAN, S., EVANS, R. C., and BLACKWELL, K. T. Synchronized firing of fast-spiking interneurons is critical to maintain balanced firing between direct and indirect pathway neurons of the striatum. Journal of Neurophysiology, 111, 836-848(2014) [27] MCCARTHY, M. M., MOORE-KOCHLACS, C., GU, X., BOYDEN, E. S., HAN, X., and KOPELL, N. Striatal origin of the pathologic beta oscillations in Parkinson's disease. Proceedings of the National Academy of Sciences, 108, 11620-11625(2011) [28] WOLF, J. A. NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuron. Journal of Neuroscience, 25, 9080-9095(2005) [29] KUMARAVELU, K., BROCKER, D. T., and GRILL, W. M. A biophysical model of the cortexbasal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson's disease. Journal of Computational Neuroscience, 40, 207-229(2016) [30] YU, Y. and WANG, Q. Oscillation dynamics in an extended model of thalamic-basal ganglia. Nonlinear Dynamics, 98, 1065-1080(2019) [31] CAIOLA, M. and HOLMES, M. H. Model and analysis for the onset of parkinsonian firing patterns in a simplified basal ganglia. International Journal of Neural, Systems, 29, 1850021(2019) [32] GILLIES, A., WILLSHAW, D., and LI, Z. Subthalamic-pallidal interactions are critical in determining normal and abnormal functioning of the basal ganglia. Proceedings of the Royal Society B:Biological Science, 269, 545-551(2002) [33] HOLGADO, A. J. N., TERRY, J. R., and BOGACZ, R. Conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network. Journal of Neuroscience, 30, 12340-12352(2010) [34] PLENZ, D. and KITAL, S. T. A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. nature, 400, 677-682(1999) [35] ROBINSON, P. A., RENNIE, C. J., and ROWE, D. L. Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Physical Review E, 65, 041924(2002) [36] VAN ALBADA, S. J., GRAY, R. T., DRYSDALE, P. M., and ROBINSON, P. A. Mean-field modeling of the basal ganglia-thalamocortical system II. Journal of Theoretical Biology, 257, 664-688(2009) [37] VAN ALBADA, S. J. and ROBINSON, P. A. Mean-field modeling of the basal gangliathalamocortical system I. Journal of Theoretical Biology, 257, 642-663(2009) [38] CHEN, M., GUO, D., WANG, T., JING, W., XIA, Y., XU, P., LUO, C., VALDES-SOSA, P. A., and YAO, D. Bidirectional control of absence seizures by the basal ganglia:a computational evidence. PLoS Computational Biology, 10, e1003495(2014) [39] FAN, D., ZHENG, Y., YANG, Z., and WANG, Q. Improving control effects of absence seizures using single-pulse alternately resetting stimulation (SARS) of corticothalamic circuit. Applied Mathematics and Mechanics (English Edition), 41(9), 1287-1302(2020) https://doi.org/10.1007/s10483-020-2644-8 [40] YU, Y., ZHANG, H., ZHANG, L., and WANG, Q. Dynamical role of pedunculopntine nucleus stimulation on controlling Parkinson's disease. Physica A:Statistical Mechanics and Its Applications, 525, 834-848(2019) [41] KERR, C. C., VAN ALBADA, S. J., NEYMOTIN, S. A., CHADDERDON, G. L., ROBINSON, P. A., and LYTTON, W. W. Cortical information flow in Parkinson's disease:a composite network/field model. Frontiers in Computational Neuroscience, 7, 39(2013) [42] FASANO, A., APPEL-CRESSWELL, S., JOG, M., ZUROWKSKI, M., DUFF-CANNING, S., COHN, M., PICILLO, M., HONEY, C. R., PANISSET, M., and MUNHOZ, R. P. Medical management of Parkinson's disease after initiation of deep brain stimulation. Canadian Journal of Neurological Sciences, 43, 626-634(2016) [43] HICKEY, P. and STACY, M. Deep brain stimulation:a paradigm shifting approach to treat Parkinson's disease. Frontiers in Neuroscience, 10, 173(2016) [44] BENABID, A. L., CHABARDES, S., MITROFANIS, J., and POLLAK, P. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson's disease. The Lancet Neurology, 8, 67-81(2009) [45] PICILLO, M., LOZANO, A. M., KOU, N., PUPPI MUNHOZ, R., and FASANO, A. Programming deep brain stimulation for Parkinson's disease:the Toronto western hospital algorithms. Brain Stimulation, 9, 425-437(2016) [46] FAN, D., WANG, Z., and WANG, Q. Optimal control of directional deep brain stimulation in the parkinsonian neuronal network. Communications in Nonlinear Science and Numerical Simulation, 36, 219-237(2016) [47] WEI, X. F. and GRILL, W. M. Impedance characteristics of deep brain stimulation electrodes in vitro and in vivo. Journal of Neural Engineering, 6, 046008(2009) [48] BUTSON, C. R. and MCINTYRE, C. C. Current steering to control the volume of tissue activated during deep brain stimulation. Brain Stimulation, 1, 7-15(2008) [49] MORO, E., ESSELINK, R. J. A., XIE, J., HOMMEL, M., BENABID, A. L., and POLLAK, P. The impact on Parkinson's disease of electrical parameter settings in STN stimulation. Neurology, 59, 706-713(2002) [50] PIRINI, M., ROCCHI, L., SENSI, M., and CHIARI, L. A computational modelling approach to investigate different targets in deep brain stimulation for Parkinson's disease. Journal of Computational Neuroscience, 26, 91-107(2009) [51] WONGSARNPIGOON, A. and GRILL, W. M. Energy-efficient waveform shapes for neural stimulation revealed with a genetic algorithm. Journal of Neural Engineering, 7, 046009(2010) [52] FOUTZ, T. J. and MCINTYRE, C. C. Evaluation of novel stimulus waveforms for deep brain stimulation. Journal of Neural Engineering, 7, 066008(2010) [53] DANESHZAND, M., FAEZIPOUR, M., and BARKANA, B. D. Computational stimulation of the basal ganglia neurons with cost effective delayed Gaussian waveforms. Frontiers in Computational Neuroscience, 11, 73(2017) [54] LIU, C., WANG, J., DENG, B., LI, H., FIETKIEWICZ, C., and LOPARO, K. A. Noise-induced improvement of the parkinsonian state:a computational study. IEEE Transactions on Cybernetics, 49, 3655-3664(2019) [55] HASHIMOTO, T., ELDER, C. M., OKUN, M. S., PATRICK, S. K., and VITEK, J. L. Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. Journal of Neuroscience, 23, 1916-1923(2003) [56] REESE, R., LEBLOIS, A., STEIGERWALD, F., PÖTTER-NERGER, M., HERZOG, J., MEHDORN, H. M., DEUSCHL, G., MEISSNER, W. G., and VOLKMANN, J. Subthalamic deep brain stimulation increases pallidal firing rate and regularity. Experimental Neurology, 229, 517-521(2011) [57] FOUTZ, T. J. and MCINTYRE, C. C. Evaluation of novel stimulus waveforms for deep brain stimulation. Journal of Neural Engineering, 7, 066008(2010) [58] CONTARINO, M. F., BOUR, L. J., VERHAGEN, R., LOURENS, M. A. J., DE BIE, R. M. A., VAN DEN MUNCKHOF, P., and SCHUURMAN, P. R. Directional steering:a novel approach to deep brain stimulation. Neurology, 83, 1163-1169(2014) [59] CHIKEN, S. and NAMBU, A. Mechanism of deep brain stimulation:inhibition, excitation, or disruption? Neuroscientist, 22, 313-322(2016) [60] TASS, P. A. Stochastic phase resetting of two coupled phase oscillators stimulated at different times. Physical Review E, 67, 051902(2003) [61] TASS, P. A. A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biological Cybernetics, 89, 81-88(2003) [62] HAUPTMANN, C., POPOVYCH, O., and TASS, P. A. Effectively desynchronizing deep brain stimulation based on a coordinated delayed feedback stimulation via several sites:a computational study. Biological Cybernetics, 93, 463-470(2005) [63] POPOVYCH, O. V. and TASS, P. A. Desynchronizing electrical and sensory coordinated reset neuromodulation. Frontiers in Human Neuroscience, 6, 58(2012) [64] LYSYANSKY, B., POPOVYCH, O. V., and TASS, P. A. Optimal number of stimulation contacts for coordinated reset neuromodulation. Frontiers in Neuroengineering, 6, 5(2013) [65] FAN, D. and WANG, Q. Improving desynchronization of parkinsonian neuronal network via triplet-structure coordinated reset stimulation. Journal of Theoretical Biology, 370, 157-170(2015) [66] YU, Y., HAO, Y., and WANG, Q. Model-based optimized phase-deviation deep brain stimulation for Parkinson's disease. Neural Networks, 122, 308-319(2020) [67] CAPOZZO, A., FLORIO, T., CONFALONE, G., MINCHELLA, D., MAZZONE, P., and SCARNATI, E. Low frequency stimulation of the pedunculopontine nucleus modulates electrical activity of subthalamic neurons in the rat. Journal of Neural Transmission, 116, 51-56(2009) [68] GARCIA-RILL, E., LUSTER, B., D'ONOFRIO, S., MAHAFFEY, S., BISAGNO, V., and URBANO, F. J. Pedunculopontine arousal system physiology-deep brain stimulation (DBS). Sleep Science, 8, 153-161(2015) [69] WANG, J. W., ZHANG, Y. Q., ZHANG, X. H., WANG, Y. P., LI, J. P., and LI, Y. J. Deep brain stimulation of pedunculopontine nucleus for postural instability and gait disorder after Parkinson disease:a meta-analysis of individual patient data. World Neurosurgery, 102, 72-78(2017) [70] MARTENS, H. C. F., TOADER, E., DECRÉ, M. M. J., ANDERSON, D. J., VETTER, R., KIPKE, D. R., BAKER, K. B., JOHNSON, M. D., and VITEK, J. L. Spatial steering of deep brain stimulation volumes using a novel lead design. Clinical Neurophysiology, 122, 558-566(2011) [71] BEUTER, A., LEFAUCHEUR, J. P., and MODOLO, J. Closed-loop cortical neuromodulation in Parkinson's disease:an alternative to deep brain stimulation? Clinical Neurophysiology, 125, 874-885(2014) [72] MIRZA, K. B., GOLDEN, C. T., NIKOLIC, K., and TOUMAZOU, C. Closed-loop implantable therapeutic neuromodulation systems based on neurochemical monitoring. Frontiers in Neuroscience, 13, 808(2019) [73] GRANT, P. F. and LOWERY, M. M. Simulation of cortico-basal ganglia oscillations and their suppression by closed loop deep brain stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21, 584-594(2013) [74] LITTLE, S. and BROWN, P. What brain signals are suitable for feedback control of deep brain stimulation in Parkinson's disease? Annals of the New York Academy of Sciences, 1265, 9-24(2012) [75] POPOVYCH, O. V. and TASS, P. A. Multisite delayed feedback for electrical brain stimulation. Frontiers in Physiology, 9, 46(2018) [76] GUO, Y. and RUBIN, J. E. Multi-site stimulation of subthalamic nucleus diminishes thalamocortical relay errors in a biophysical network model. Neural Networks, 24, 602-616(2011) [77] DANESHZAND, M., FAEZIPOUR, M., and BARKANA, B. D. Robust desynchronization of Parkinson's disease pathological oscillations by frequency modulation of delayed feedback deep brain stimulation. PLoS One, 13, e0207761(2018) [78] SU, F., WANG, J., NIU, S., LI, H., DENG, B., LIU, C., and WEI, X. Nonlinear predictive control for adaptive adjustments of deep brain stimulation parameters in basal ganglia-thalamic network. Neural Networks, 98, 283-295(2018) [79] MEIDAHL, A. C., TINKHAUSER, G., HERZ, D. M., CAGNAN, H., DEBARROS, J., and BROWN, P. Adaptive deep brain stimulation for movement disorders:the long road to clinical therapy:adaptive DBS review. Movement Disorders, 32, 810-819(2017) [80] LITTLE, S., BEUDEL, M., ZRINZO, L., FOLTYNIE, T., LIMOUSIN, P., HARIZ, M., NEAL, S., CHEERAN, B., CAGNAN, H., GRATWICKE, J., AZIZ, T. Z., POGOSYAN, A., and BROWN, P. Bilateral adaptive deep brain stimulation is effective in Parkinson's disease. Journal of Neurology, Neurosurgery, Psychiatry, 87, 717-721(2016) [81] LITTLE, S., POGOSYAN, A., NEAL, S., ZAVALA, B., ZRINZO, L., HARIZ, M., FOLTYNIE, T., LIMOUSIN, P., ASHKAN, K., FITZGERALD, J., GREEN, A. L., AZIZ, T. Z., and BROWN, P. Adaptive deep brain stimulation in advanced Parkinson disease. Annals of Neurology, 74, 449-457(2013) [82] VELISAR, A., SYRKIN-NIKOLAU, J., BLUMENFELD, Z., TRAGER, M. H., AFZAL, M. F., PRABHAKAR, V., and BRONTE-STEWART, H. Dual threshold neural closed loop deep brain stimulation in Parkinson disease patients. Brain Stimulation, 12, 868-876(2019) [83] GORZELIC, P., SCHIFF, S. J., and SINHA, A. Model-based rational feedback controller design for closed-loop deep brain stimulation of Parkinson's disease. Journal of Neural Engineering, 10, 026016(2013) [84] MASTRO, K. J., ZITELLI, K. T., WILLARD, A. M., LEBLANC, K. H., KRAVITZ, A. V., and GITTIS, A. H. Cell-specific pallidal intervention induces long-lasting motor recovery in dopaminedepleted mice. Nature Neuroscience, 20, 815-823(2017) [85] MASTRO, K. J., BOUCHARD, R. S., HOLT, H. A. K., and GITTIS, A. H. Transgenic mouse lines subdivide external segment of the globus pallidus (GPe) neurons and reveal distinct GPe output pathways. Journal of Neuroscience, 34, 2087-2099(2014) [86] GITTIS, A. H., BERKE, J. D., BEVAN, M. D., CHAN, C. S., MALLET, N., MORROW, M. M., and SCHMIDT, R. New roles for the external globus pallidus in basal ganglia circuits and behavior. Journal of Neuroscience, 34, 15178-15183(2014) [87] GITTIS, A. H. and YTTRI, E. A. Translating insights from optogenetics into therapies for Parkinson's disease. Current Opinion in Biomedical Engineering, 8, 14-19(2018) [88] LIANG, S. and WANG, Z. Controlling a neuron by stimulating a coupled neuron. Applied Mathematics and Mechanics (English Edition), 40(1), 13-24(2019) https://doi.org/10.1007/s10483-019-2407-8 [89] ZHANG, X., LIU, S., ZHAN, F., WANG, J., and JIANG, X. The effects of medium spiny neuron morphologcial changes on basal ganglia network under external electric field:a computational modeling study. Frontiers in Computational Neuroscience, 11, 91(2017) |