[1] |
CATTANEO, C. Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena, 3, 83-101(1949)
|
[2] |
CHRISTOV, C. I. On frame indifferent formulation of the Maxwell-Cattaneo model of finite speed heat conduction. Mechanics Research Communications, 36, 481-486(2009)
|
[3] |
HAN, S., ZHENG, L., LI, C., and ZHANG, X. Coupled flow and heat transfer in viscoelastic fluid with Cattaneo-Christov heat flux model. Applied Mathematics Letters, 38, 87-93(2014)
|
[4] |
ANJUM, A., MIR, N. A., FAROOQ, M., JAVED, M., AHMAD, S., MALIK, M. Y., and ALSHOMRANI, A. S. Physical aspects of heat generation/absorption in the second grade fluid flow due to Riga plate:application of Cattaneo-Christov approach. Results in Physics, 9, 955-960(2018)
|
[5] |
HAYAT, T., MUHAMMAD, T., and ALSAEDI, A. On three-dimensional flow of couple stress fluid with Cattaneo-Christov heat flux. Chinese Journal of Physics, 55, 930-938(2017)
|
[6] |
ABBASI, F. M. and SHEHZAD, S. A. Heat transfer analysis for three-dimensional flow of Maxwell fluid with temperature dependent thermal conductivity:application of Cattaneo-Christov heat flux model. Journal of Molecular Liquids, 220, 848-854(2016)
|
[7] |
LI, J., ZHENG, L., and LIU, L. MHD viscoelastic flow and heat transfer over a vertical stretching sheet with Cattaneo-Christov heat flux effects, Journal of Molecular Liquids, 221, 19-25(2016)
|
[8] |
MUSTAFA, M. Cattaneo-Christov heat flux model for rotating flow and heat transfer of upperconvected Maxwell fluid. AIP Advances, 5, 047109(2015)
|
[9] |
RAUF, A., ABBAS, Z., and SHEHZAD, S. A. Utilization of Maxwell-Cattaneo law for MHD swirling flow through oscillatory disk subject to porous medium. Applied Mathematics and Mechanics (English Edition), 40, 837-850(2019) https://doi.org/10.1007/s10483-019-2488-9
|
[10] |
CHOI, S. U. S. Enhancing thermal conductivity of fluids with nanoparticles. Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, 99-105(1995)
|
[11] |
BUONGIORNO, J. Convective transport in nanofluids. Journal of Heat Transfer, 128, 240-250(2006)
|
[12] |
BABU, M. J. and SANDEEP, N. Three-dimensional MHD slip flow of nanofluids over a slendering stretching sheet with thermophoresis and Brownian motion effects. Advanced Powder Technology, 27, 2039-2050(2016)
|
[13] |
RAJU, C. S. K., BABU, M. J., SANDEEP, N., and KRISHNA, P. M. Influence of non-uniform heat source/sink on MHD nanofluid flow over a moving vertical plate in porous medium. International Journal of Scientific & Engineering Research, 6, 31-42(2015)
|
[14] |
JING, L., LIU, L., ZHENG, L., and MOHSIN, B. B. Unsteady MHD flow and radiation heat transfer of nanofluid in a finite thin film with heat generation and thermophoresis. Journal of the Taiwan Institute of Chemical Engineers, 67, 226-234(2016)
|
[15] |
BHATTI, M. M. and RASHIDI, M. M. Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching sheet. Journal of Molecular Liquids, 21, 567-573(2016)
|
[16] |
SHEIKHOLESLAMI, M., RASHIDI, M. M., and GANJI, D. D. Effect of non-uniform magnetic field on forced convection heat transfer of Fe3O4 water nanofluid. Computers Methods in Applied Mechanics and Engineering, 294, 299-312(2015)
|
[17] |
RASHIDI, M. M., FREIDOONIMEHR, N., HOSSEINI, A., BEG, O. A., and HUNG, T. K. Homotopy simulation of nanofluid dynamics from a non-linearly stretching isothermal permeable sheet with transpiration. Meccanica, 49, 469-482(2014)
|
[18] |
HAYAT, T., MUHAMMAD, K., FAROOQ, M., and ALSAEDI, A. Melting heat transfer in stagnation point flow of carbon nanotubes towards variable thickness surface. AIP Advances, 6, 015214(2016)
|
[19] |
ERINGEN, A. C. Microcontinuum Field Theories I & II, Springer, New York (2001)
|
[20] |
ERINGEN, A. C. Simple micro fluids. International Journal of Engineering Science, 2, 205-217(1964)
|
[21] |
ERINGEN, A. C. Theory of micropolar fluid. Journal of Mathematics and Mechanics, 16, 1-18(1966)
|
[22] |
ERINGEN, A. C. Theory of thermomicro fluids. Journal of Mathematical Analysis and Applications, 38, 480-496(1972)
|
[23] |
EL-KABEIR, S. M. M. Hiemenz flow of micropolar viscoelastic fluid in hydromagnetics. Canadian Journal of Physics, 83, 1007-1017(2005)
|
[24] |
TURKYILMAZOGLU, M. Flow of a micropolar fluid due to a porous stretching sheet and heat transfer. International Journal of Non-Linear Mechanics, 83, 59-64(2016)
|
[25] |
HAYAT, T., KHAN, M. I., WAQAS, M., ALSAEDI, A., and KHAN, M. I. Radiative flow of micropolar nanofluid accounting thermophoresis and Brownian moment. International Journal of Hydrogen Energy, 42, 16821-16833(2017)
|
[26] |
MISHRA, S. R., KHAN, I., AL-MDALLAL, Q. M., and ASIF, T. Free convective micropolar fluid flow and heat transfer over a shrinking sheet with heat source. Case Studies in Thermal Engineering, 11, 113-119(2018)
|
[27] |
ZUBAIR, M., WAQAS, M., HAYAT, T., AYUB, M., and ALSAEDI, A. The onset of modified Fourier and Fick's theories in temperature dependent, conductivity flow of micropolar liquid. Results in Physics, 7, 3145-3152(2017)
|
[28] |
SUI, J., ZHAO, P., CHENG, Z., ZHENG, L., and ZHANG, X. A novel investigation of a micropolar fluid characterized by nonlinear constitutive diffusion model in boundary layer flow and heat transfer. Physics of Fluids, 29, 023105(2017)
|
[29] |
ABBAS, Z., SHEIKH, M., and SAJID, M. Hydromagnetic stagnation point flow of a micropolar viscoelastic fluid towards a stretching/shrinking sheet in the presence of heat generation. Canadian Journal of Physics, 92, 1113-1123(2014)
|
[30] |
LIAO, S. J. Advances in the Homotopy Analysis Method, World Scientific Publishing, Singapore (2014)
|
[31] |
TURKYILMAZOGLU, M. Some issues on HPM and HAM methods:a convergence scheme. Mathematical and Computer Modelling, 53, 1929-1936(2011)
|
[32] |
TURKYILMAZOGLU, M. The analytical solution of mixed convection heat transfer and fluid flow of a MHD viscoelastic fluid over a permeable stretching surface. International Journal Mechanical Sciences, 77, 263-268(2013)
|
[33] |
MERAJ, M. A., SHEHZAD, S. A., HAYAT, T., ABBASI, F. M., and ALSAEDI, A. Darcy-Forchheimer flow of variable conductivity Jeffrey liquid with Cattaneo-Christov heat flux theory. Applied Mathematics and Mechanics (English Edition), 38, 557-566(2017) https://doi.org/10.1007/s10483-017-2188-6
|
[34] |
SHEHZAD, S. A. Magnetohydrodynamic Jeffrey nanoliquid flow with thermally radiative Newtonian heat and mass species. Revista Mexicana de Fisica, 64, 628-633(2018)
|
[35] |
KHAN, S. U., SHEHZAD, S. A., and NASIR, S. Unsteady flow of chemically reactive OldroydB fluid over oscillatory moving surface with thermos-diffusion and heat absorption/generation effects. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 72(2019)
|
[36] |
KHAN, S. U., RAUF, A., SHEHZAD, S. A., ABBAS, Z., and JAVED, T. Study of bioconvection flow in Oldroyd-B nanofluid with motile organisms and effective Prandtl approach. Physica A:Statistical Mechanics and its Applications, 527, 121179(2019)
|