[1] FENG, K. and QIN, M. Z. Symplectic Geometric Algorithms for Hamiltonian Systems, Springer, Berlin (2010) [2] MARSDEN, J. E. and WEST, M. Discrete mechanics and variational integrators. Acta Numerica, 10, 357-514 (2001) [3] LEOK, M. and SHINGEL, T. General techniques for constructing variational integrators. Frontiers of Mathematics in China, 7(2), 273-303 (2012) [4] OBER-BLÖBAUM, S. and SAAKE, N. Construction and analysis of higher order Galerkin variational integrators. Advances in Computational Mathematics, 41(6), 955-986 (2015) [5] LEOK, M. Generalized Galerkin variational integrators. arXiv, 0508360 (2005) https://arxiv.org/abs/math/0508360 [6] LEE, T., LEOK, M., and MCCLAMROCH, N. H. Lie group variational integrators for the full body problem in orbital mechanics. Celestial Mechanics and Dynamical Astronomy, 98(2), 121-144 (2007) [7] PALACIOS, L. and GURFIL, P. Variational and symplectic integrators for satellite relative orbit propagation including drag. Celestial Mechanics and Dynamical Astronomy, 130(4), 31 (2018) [8] OBER-BLÖBAUM, S., JUNGE, O., and MARSDEN, J. E. Discrete mechanics and optimal control: an analysis. ESAIM: Control, Optimisation and Calculus of Variations, 17(2), 322-352 (2011) [9] KOBILAROV, M. B. and MARSDEN, J. E. Discrete geometric optimal control on Lie groups. IEEE Transactions on Robotics, 27(4), 641-655 (2011) [10] MOORE, A., OBER-BLÖBAUM, S., and MARSDEN, J. E. Trajectory design combining invariant manifolds with discrete mechanics and optimal control. Journal of Guidance, Control, and Dynamics, 35(5), 1507-1525 (2012) [11] BOLATTI, D. A. and DE RUITER, A. H. Galerkin variational integrators for orbit propagation with applications to small bodies. Journal of Guidance, Control, and Dynamics, 42(2), 347-363 (2018) [12] HALL, J. and LEOK, M. Lie group spectral variational integrators. Foundations of Computational Mathematics, 17(1), 199-257 (2017) [13] HE, L., WU, H. B., and MEI, F. X. Variational integrators for fractional Birkhoffian systems. Nonlinear Dynamics, 87(4), 2325-2334 (2017) [14] TREFETHEN, L. N. Spectral Methods in MATLAB, Society of Industrial and Applied Mathematics, Philadelphia (2000) [15] BOYD, J. P. Chebyshev and Fourier Spectral Methods, 2nd ed., Dover Publications, Inc., New York (2001) [16] SHEN, J., TANG, T., and WANG, L. L. Spectral Methods: Algorithms, Analysis and Applications, Springer-Verlag, Berlin (2011) [17] HALE, N. and TREFETHEN, L. N. Chebfun and numerical quadrature. Science China Mathematics, 55(9), 1749-1760 (2012) [18] DRISCOLL, T. A., HALE, N., and TREFETHEN, L. N. Chebfun Guide, Pafnuty Publications, Oxford (2014) [19] JIAO, Y. J. and GUO, B. Y. Mixed spectral method for exterior problems of Navier-Stokes equations by using generalized Laguerre functions. Applied Mathematics and Mechanics (English Edition}), 30(5), 561-574 (2009) https://doi.org/10.1007/s10483-009-0503-z [20] LI, B. and CHEN, S. Direct spectral domain decomposition method for 2D incompressible Navier-Stokes equations. Applied Mathematics and Mechanics (English Edition}), 36(8), 1073-1090 (2015) https://doi.org/10.1007/s10483-015-1964-7 [21] GONG, Q., ROSS, I. M., and FAHROO, F. Costate computation by a Chebyshev pseudospectral method. Journal of Guidance, Control, and Dynamics, 33(2), 623-628 (2010) [22] GE, X. S., YI, Z. G., and CHEN, L. Q. Optimal control of attitude for coupled-rigid-body spacecraft via Chebyshev-Gauss pseudospectral method. Applied Mathematics and Mechanics (English Edition}), 38(9), 1257-1272 (2017) https://doi.org/10.1007/s10483-017-2236-8 [23] YI, Z. G. and GE, X. S. Attitude maneuver of dual rigid bodies spacecraft using hp-adaptive pseudo-spectral method. International Journal of Aeronautical and Space Sciences, 20(1), 214-227 (2019) [24] HALL, J. and LEOK, M. Spectral variational integrators. Numerische Mathematik, 130(4), 681-740 (2015) [25] TREFETHEN, L. N. Is Gauss quadrature better than Clenshaw-Curtis? SIAM Review, 50(1), 67-87 (2008) [26] BERRUT, J. P. and TREFETHEN, L. N. Barycentric Lagrange interpolation. SIAM Review, 46(3), 501-517 (2004) [27] LI, Y. Q., WU, B. Y., and LEOK, M. Construction and comparison of multidimensional spectral variational integrators and spectral collocation methods. Applied Numerical Mathematics, 132, 35-50 (2018) [28] LI, Y. Q., WU, B. Y., and LEOK, M. Spectral-collocation variational integrators. Journal of Computational Physics, 332, 83-98 (2017) [29] LIU, W. J., WU, B. Y., and SUN, J. Some numerical algorithms for solving the highly oscillatory second-order initial value problems. Journal of Computational Physics, 276, 235-251 (2014) [30] WEIDEMAN, J. A. C. and TREFETHEN, L. N. The kink phenomenon in Fejér and Clenshaw-Curtis quadrature. Numerische Mathematik, 107(4), 707-727 (2007) [31] SOMMARIVA, A. Fast construction of Fejér and Clenshaw-Curtis rules for general weight functions. Computers & Mathematics with Applications, 65(4), 682-693 (2013) [32] WALDVOGEL, J. Fast construction of the Fejér and Clenshaw-Curtis quadrature rules. BIT Numerical Mathematics, 46(1), 195-202 (2006) |