[1] NIKOLA, N., PETER, K., TILL, F., FLORIAN, H. S., ALEXANDER, M., KYLE, G. W., and JURGEN, R. Influence of metal/semiconductor interface on attainable piezoelectric and energy harvesting properties of ZnO. Acta Materialia, 162, 277-283(2018) [2] ZHU, G., YANG, R. S., WANG, S. H., and WANG, Z. L. Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Letters, 10, 3151-3155(2010) [3] FAN, S. Q., YANG, W. L., and HU, Y. T. Adjustment and control on the fundamental characteristics of a piezoelectric PN junction by mechanical-loading. Nano Energy, 52, 416-421(2018) [4] YANG, W. L., FAN, S. Q., LIANG, Y. X., and HU, Y. T. Prestress-loading effect on the currentvoltage characteristics of a piezoelectric p-n junction together with the corresponding mechanical tuning laws. Beilstein Journal of Nanotechnology, 10, 1833-1843(2019) [5] GAO, Y. and WANG, Z. L. Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Letters, 7, 2499-2505(2007) [6] YANG, R. S., QIN, Y., DAI, L. M., and WANG, Z. L. Power generation with laterally packaged piezoelectric fine wires. Nature Nanotechnology, 4, 34-39(2009) [7] QIN, Y., WANG, X. D., and WANG, Z. L. Microfibre-nanowire hybrid structure for energy scavenging. nature, 451, 809-813(2008) [8] WANG, Z. L. Towards self-powered nanosystems:from nanogenerators to nanopiezotronics. Advanced Functional Materials, 18, 3553-3567(2008) [9] XU, S., QIN, Y., XU, C., WEI, Y. G., YANG, R. S., and WANG, Z. L. Self-powered nanowire devices. Nature Nanotechnology, 5, 366-373(2010) [10] WANG, C. H., LIAO, W. S., KU, N. J., LI, Y. C., CHEN, Y. C., TU, L. W., and LIU, C. P. Effects of free carriers on piezoelectric nanogenerators and piezotronic devices made of GaN nanowire arrays. Small, 10, 4718-4725(2014) [11] WANG, Z. L. Piezopotential gated nanowire devices:piezotronics and piezo-phototronics. Nano Today, 5, 540-552(2010) [12] ZHANG, Y., LIU, Y., and WANG, Z. L. Fundamental theory of piezotronics. Advanced Materials, 23, 3004-3013(2011) [13] LIU, W., ZHANG, A. H., ZHANG, Y., and WANG, Z. L. First principle simulations of piezotronic transistors. Nano Energy, 14, 355-363(2015) [14] WANG, Z. L. ZnO nanowire and nanobelt platform for nanotechnology. Materials Science and Engineering:R:Reports, 64, 33-71(2009) [15] WU, Y. R. and SINGH, J. Metal piezoelectric semiconductor field effect transistors for piezoelectric strain sensors. Applied Physics Letters, 85, 1223-1225(2004) [16] BUYUKKOSE, S., HERNANDEZ-MINGUEZ, A., VRATZOV, B., SOMASCHINI, C., GEELHAAR, L., RIECHERT, H., WIE, W. G., and SANTOS, P. V. High-frequency acoustic charge transport in GaAs nanowires. Nanotechnology, 25, 135204(2014) [17] WANG, Z. L. Nanobelts, nanowires, and nanodiskettes of semiconducting oxides-from materials to nanodevices. Advanced Materials, 15, 432-436(2003) [18] YU, J., IPPOLITO, S. J., WLODARSKI, W., STRANO, M., and KALANTAR-ZADEH, K. Nanorod based Schottky contact gas sensors in reversed bias condition. Nanotechnology, 21, 265502(2010) [19] TSAI, S. T. Two problems of the semi-conductor physics discussed with point of the view of the fluid dynamics. Applied Mathematics and Mechanics (English Edition), 1(3), 333-339(1980) https://doi.org/10.1007/BF01874556 [20] HUANG, K. and HAN, R. Q. The Physical Basis of Semiconductor, The Science Publishing Company, Beijing (2015) [21] LIU, E. K., ZHU, B. S., and LUO, J. S. The Physics of Semiconductors, Publishing House of Electronics Industry, Beijing (2014) [22] SHOCKLEY, W. The theory of p-n junctions in semiconductors and p-n junction transistors. Bell System Technical Journal, 28, 435-489(1949) [23] WARNER, R. M. Transistors Fundamentals for the Integrated-Circuit Engineer, Wiley, New York (1983) [24] KRAMER, K. M. and HITCHON, W. N. G. Semiconductor Devices-a Simulation Approach, Prentice Hall, Upper Saddle River, New Jersey (1997) [25] MOLL, J. L. The evolution of the theory for the voltage-current characteristic of p-n junctions. Proceedings of the IRE, 46, 1076-1085(1958) |