[1] SAGUÉS, F., SANCHO, J. M., and GARCÍA-OJALVO, J. Spatiotemporal order out of noise. Review of Modern Physics, 79(3), 829-882(2007) [2] BULSARA, A. R. Stochastic resonance. Encyclopedia of Statistical Sciences, Wiley, New York (2006) [3] GUO, D. Q., PERC, M., ZHANG, Y. S., XU, P., and YAO, D. Z. Frequency-difference-dependent stochastic resonance in neural systems. Physical Review E, 96, 022415(2017) [4] BALESCU, R. Equilibrium and non-equilibrium statistical mechanics. Physics Today, 29, 76(1976) [5] KLAFTER, J., LIM, S. C., and METZLER, R. Fractional Dynamics:Recent Advances, World Scientific, Singapore (2012) [6] HORSTHEMKE, W. and LEFEVER, R. Noise-induced transitions. Noise in Nonlinear Dynamical Systems, Cambridge University Press, Cambridge (1989) [7] DENISOV, S. I., VITRENKO, A. N., and HORSTHEMKE, W. Nonequilibrium transitions induced by the cross-correlation of white noises. Physical Review E, 68, 046132(2003) [8] WANG, Y., LAI, Y. C., and ZHENG, Z. G. Onset of colored-noise-induced synchronization in chaotic systems. Physical Review E, 79, 056210(2009) [9] HUA, M. J., LEI, Y. M., and DU, L. Onset of stochastic synchronization induced by diffusion processes in a generalized Duffing system. Communications in Nonlinear Science and Numerical Simulation, 83, 105098(2020) [10] TÉL, T. and LAI, Y. C. Quasipotential approach to critical scaling in noise-induced chaos. Physical Review E, 81, 056208(2010) [11] LEI, Y. M., HUA, M. J., and DU, L. Onset of colored-noise-induced chaos in the generalized Duffing system. Nonlinear Dynamics, 89(2), 1371-1383(2017) [12] ARNOLD, L. Random Dynamical Systems, Springer, Berlin, 1-43(1995) [13] NAMACHCHIVAYA, N. S. Stochastic bifurcation. Applied Mathematics and Computation, 38(2), 101-159(1990) [14] CHEN, X. P., DUAN, J. Q., and FU, X. C. A sufficient condition for bifurcation in random dynamical systems. Proceedings of the American Mathematical Society, 138(3), 965-973(2010) [15] GU, R. C., XU, Y., ZHANG, H. Q., and SUN, Z. K. Phase transitions and the mean first passage time of an asymmetric bistable system with non-Gaussian Lévy noise (in Chinese). Acta Physica Sinica, 60(11), 110514(2011) [16] FUENTES, M. A., TORAL, R., and WIO, H. S. Enhancement of stochastic resonance:the role of non Gaussian noises. Physica A:Statistical Mechanics and Its Applications, 295, 114-122(2001) [17] WIO, H. S. and TORAL, R. Effect of non-Gaussian noise sources in a noise-induced transition. Physica D:Nonlinear Phenomena, 193, 161-168(2003) [18] WU, D., LUO, X. Q., and ZHU, S. Q. Stochastic system with coupling between non-Gaussian and Gaussian noise terms. Physica A:Statistical Mechanics and Its Applications, 373, 203-214(2007) [19] WU, D. and ZHU, S. Q. Stochastic resonance in a bistable system with time-delayed feedback and non-Gaussian noise. Physics Letters A, 363(3), 202-212(2007) [20] ZHANG, J. J. and JIN, Y. F. Mean first-passage time and stochastic resonance in an asymmetric bistable system driven by non-Gaussian noise (in Chinese). Acta Physica Sinica, 60, 120501(2011) [21] DUAN, J. Q. An Introduction to Stochastic Dynamics, Cambridge University Press, Cambridge (2015) [22] CHENG, Z., DUAN, J. Q., and WANG, L. Most probable dynamics of some nonlinear systems under noisy fluctuations. Communications in Nonlinear Science and Numerical Simulation, 30, 108-114(2016) [23] CHEN, X. L., WU, F. Y., DUAN, J. Q., KURTHS, J., and LI, X. F. Most probable dynamics of a genetic regulatory network under stable Lévy noise. Applied Mathematics and Computation, 348, 425-436(2019) [24] SCHWARTZ, I. B., FORGOSTON, E., BIANCO, S., and SHAW, L. B. Converging towards the optimal path to extinction. Journal of the Royal Society Interface, 8(65), 1699-1707(2011) [25] LI, Y., DUAN, J. Q., LIU, X. B., and ZHANG, Y. X. Most probable dynamics of stochastic dynamical systems with exponentially light jump fluctuations. Chaos:An Interdisciplinary Journal of Nonlinear Science, 30(6), 063142(2020) [26] WANG, H., CHEN, X. L., and DUAN, J. Q. A stochastic pitchfork bifurcation in most probable phase portraits. International Journal of Bifurcation and Chaos, 28(1), 1850017(2018) [27] HAN, P., XU, W., WANG, L., and MA, S. C. The most probable response of some prototypical stochastic nonlinear dynamical systems. Chaos, Solitons & Fractals, 132, 109612(2020) [28] HAN, P., WANG, L., XU, W., ZHANG, H. X., and REN, Z. C. The stochastic P-bifurcation analysis of the impact system via the most probable response. Chaos, Solitons & Fractals, 144, 110631(2021) [29] TSALLIS, C. Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics, 52(1), 479-487(1988) [30] GUTTAL, V. and JAYAPRAKASH, C. Impact of noise on bistable ecological systems. Ecological Modelling, 201, 420-428(2007) [31] LI, D. X. and YANG, Y. C. Impact of time delay on population model with Allee effect. Communications in Nonlinear Science and Numerical Simulation, 72, 282-293(2019) [32] FUENTES, M. A., WIO, H. S., and TORAL, R. Effective Markovian approximation for non-Gaussian noises:a path integral approach. Physica A:Statistical Mechanics and Its Applications, 303, 91-104(2002) [33] BOUZAT, S. and WIO, H. S. New aspects on current enhancement in Brownian motors driven by non-Gaussian noises. Physica A:Statistical Mechanics and Its Applications, 351, 69-78(2005) [34] JUNG, P. and HÄNGGI, P. Dynamical systems:a unified colored-noise approximation. Physical Review A, 35(10), 4464-4466(1987) [35] CAO, L., WU, D. J., and KE, S. Z. Bistable kinetic model driven by correlated noises:unified colored-noise approximation. Physical Review E, 52(3), 3228-3231(1995) [36] JIA, Y., ZHENG, X. P., HU, X. M., and LI, J. R. Effects of colored noise on stochastic resonance in a bistable system subject to multiplicative and additive noise. Physical Review E, 63, 031107(2001) [37] WIO, H. S., COLET, P., SAN-MIGUEL, M., PESQUERA, L., and RODRÍGUEZ, M. A. Path-integral formulation for stochastic processes driven by colored noise. Physical Review A, 40, 7312-7324(1989) |