[1] KOO, G. H. and PARK, Y. S. Vibration reduction by using periodic supports in a piping system. Journal of Sound and Vibration, 210(1), 53-68(1998) [2] YU, D. L., PAÏDOUSSIS, M. P., SHEN, H. J., and WANG, L. Dynamic stability of periodic pipes conveying fluid. Journal of Applied Mechanics, 81(1), 011008(2013) [3] GU, J. J., MA, T. Q., and DUAN, M. L. Effect of aspect ratio on the dynamic response of a fluid-conveying pipe using the Timoshenko beam model. Ocean Engineering, 114, 185-191(2016) [4] TAN, X., MAO, X. Y., DING, H., and CHEN, L. Q. Vibration around non-trivial equilibrium of a supercritical Timoshenko pipe conveying fluid. Journal of Sound and Vibration, 428, 104-118(2018) [5] LYU, X. F., CHEN, F., REN, Q. Q., TANG, Y., DING, Q., and YANG, T. Z. Ultra-thin piezoelectric lattice for vibration suppression in pipe conveying fluid. Acta Mechanica Solida Sinica, 33(6), 770-780(2020) [6] LIANG, F. and YANG, X. D. Wave properties and band gap analysis of deploying pipes conveying fluid with periodic varying parameters. Applied Mathematical Modelling, 77, 522-538(2020) [7] SIGALAS, M. M. and ECONOMOU, E. N. Elastic and acoustic wave band structure. Journal of Sound and Vibration, 158(2), 377-382(1992) [8] KUSHWAHA, M. S., HALEVI, P., MARTÍNEZ, G., DOBRZYNSKI, L., and DJAFARIROUHANI, B. Theory of acoustic band structure of periodic elastic composites. Physical Review B, 49, 2313-2322(1994) [9] LIU, Z. Y., ZHANG, X. X., MAO, Y. W., ZHU, Y. Y., YANG, Z. Y., CHAN, C. T., and SHENG, P. Locally resonant sonic materials. Science, 289(5485), 1734-1736(2000) [10] HIRSEKORN, M., DELSANTO, P. P., BATRA, N. K., and MATIC, P. Modelling and simulation of acoustic wave propagation in locally resonant sonic materials. Ultrasonics, 42(1), 231-235(2004) [11] CHEN, Y. Y. and WANG, L. F. Periodic co-continuous acoustic metamaterials with overlapping locally resonant and Bragg band gaps. Applied Physics Letters, 105(19), 191907(2014) [12] JIANG, S., DAI, L. X., CHEN, H., HU, H. P., JIANG, W., and CHEN, X. D. Folding beam-type piezoelectric phononic crystal with low-frequency and broad band gap. Applied Mathematics and Mechanics (English Edition), 38(3), 411-422(2017) https://doi.org/10.1007/s10483-017-2171-7 [13] LU, L., RU, C. Q., and GUO, X. M. Vibration isolation of few-layer graphene sheets. International Journal of Solids and Structures, 185-186, 78-88(2020) [14] LU, L., RU, C. Q., and GUO, X. M. Metamaterial vibration of tensioned circular few-layer graphene sheets. Journal of Applied Mechanics, 87, 061009(2020) [15] MILLER, R. E. and SHENOY, V. B. Size-dependent elastic properties of nanosized structural elements. Nanotechnology, 11(3), 139-147(2000) [16] MCFARLAND, A. W. and COLTON, J. S. Role of material microstructure in plate stiffness with relevance to microcantilever sensors. Journal of Micromechanics and Microengineering, 15(5), 1060-1067(2005) [17] QIAN, D. H. Electro-mechanical coupling wave propagating in a locally resonant piezoelectric/elastic phononic crystal nanobeam with surface effects. Applied Mathematics and Mechanics (English Edition), 41(3), 425-438(2020) https://doi.org/10.1007/s10483-020-2586-5 [18] ENGELBRECHT, J., BEREZOVSKI, A., PASTRONE, F., and BRAUN, M. Waves in microstructured materials and dispersion. Philosophical Magazine, 85(33-35), 4127-4141(2005) [19] FOREST, S. and BERTRAM, A. Formulations of Strain Gradient Plasticity, Springer Berlin Heidelberg, Berlin, Heidelberg, 137-149(2011) [20] BARATI, M. R. and ZENKOUR, A. A general bi-Helmholtz nonlocal strain-gradient elasticity for wave propagation in nanoporous graded double-nanobeam systems on elastic substrate. Composite Structures, 168, 885-892(2017) [21] TOUPIN, R. A. Elastic materials with couple-stresses. Archive for Rational Mechanics and Analysis, 11(1), 385-414(1962) [22] MINDLIN, R. D. Influence of couple stresses in linear elasticity. Experimental Mechanics, 20, 1-7(1973) [23] YANG, F., CHONG, A. C. M., LAM, D. C. C., and TONG, P. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 39(10), 2731-2743(2002) [24] MINDLIN, R. D. Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis, 16(1), 51-78(1964) [25] MINDLIN, R. D. and ESHEL, N. N. On first strain-gradient theories in linear elasticity. International Journal of Solids and Structures, 4(1), 109-124(1968) [26] POLIZZOTTO, C. A hierarchy of simplified constitutive models within isotropic strain gradient elasticity. European Journal of Mechanics-A/Solids, 61, 92-109(2017) [27] ERINGEN, A. C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 54(9), 4703-4710(1983) [28] GURTIN, M. E. and IAN MURDOCH, A. A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57(4), 291-323(1975) [29] GURTIN, M. E. and IAN MURDOCH, A. Surface stress in solids. International Journal of Solids and Structures, 14(6), 431-440(1978) [30] LI, Y. Q., WEI, P. J., and ZHOU, Y. H. Band gaps of elastic waves in 1-D phononic crystal with dipolar gradient elasticity. Acta Mechanica, 227(4), 1005-1023(2016) [31] ZHANG, G. Y., GAO, X. L., and DING, S. R. Band gaps for wave propagation in 2-D periodic composite structures incorporating microstructure effects. Acta Mechanica, 229(10), 4199-4214(2018) [32] ZHANG, G. Y. and GAO, X. L. Elastic wave propagation in 3-D periodic composites:band gaps incorporating microstructure effects. Composite Structures, 204, 920-932(2018) [33] PARK, S. K. and GAO, X. L. Variational formulation of a modified couple stress theory and its application to a simple shear problem. Journal of Applied Mathematics and Physics, 59(5), 904-917(2008) [34] QIAN, D. H. Bandgap properties of a piezoelectric phononic crystal nanobeam based on nonlocal theory. Journal of Materials Science, 54(5), 4038-4048(2019) [35] QIAN, D. H. Bandgap properties of a piezoelectric phononic crystal nanobeam with surface effect. Journal of Applied Physics, 124(5), 055101(2018) [36] ZHANG, G. Y., GAO, X. L., BISHOP, J. E., and FANG, H. E. Band gaps for elastic wave propagation in a periodic composite beam structure incorporating microstructure and surface energy effects. Composite Structures, 189, 263-272(2018) [37] ZHANG, G. Y. and GAO, X. L. Band gaps for flexural elastic wave propagation in periodic composite plate structures based on a non-classical Mindlin plate model incorporating microstructure and surface energy effects. Continuum Mechanics and Thermodynamics, 31(6), 1911-1930(2019) [38] ZHANG, G. Y. and GAO, X. L. Elastic wave propagation in a periodic composite plate structure:band gaps incorporating microstructure, surface energy and foundation effects. Journal of Mechanics of Materials and Structures, 14(2), 219-236(2019) [39] KANG, M. G. The influence of rotary inertia of concentrated masses on the natural vibrations of a clamped-supported pipe conveying fluid. Nuclear Engineering and Design, 196(3), 281-292(2000) [40] QIAN, Q., WANG, L., and NI, Q. Instability of simply supported pipes conveying fluid under thermal loads. Mechanics Research Communications, 36(3), 413-417(2009) [41] GAO, X. L. and MAHMOUD, F. F. A new Bernoulli-Euler beam model incorporating microstructure and surface energy effects. Journal of Applied Mathematics and Physics, 65(2), 393-404(2014) [42] HU, B., ZHANG, Z. F., YU, D. L., LIU, J. W., and ZHU, F. L. Broadband bandgap and shock vibration properties of acoustic metamaterial fluid-filled pipes. Journal of Applied Physics, 128(20), 205103(2020) [43] PARK, S. K. and GAO, X. L. Bernoulli-Euler beam model based on a modified couple stress theory. Journal of Micromechanics and Microengineering, 16(11), 2355-2359(2006) [44] SHENOY, V. B. Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Physical Review B, 71, 094104(2005) [45] ZHANG, Y., ZHUO, L. J., and ZHAO, H. S. Determining the effects of surface elasticity and surface stress by measuring the shifts of resonant frequencies. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 469(2159), 20130449(2013) [46] BLOCH, F. Über die quantenmechanik der elektronen in kristallgittern. Zeitschrift für Physik, 52(7), 555-600(1929) [47] LIU, L. and HUSSEIN, M. I. Wave motion in periodic flexural beams and characterization of the transition between Bragg scattering and local resonance. Journal of Applied Mechanics, 79(1), 011003(2011) [48] YU, D. L., WEN, J. H., ZHAO, H. G., LIU, Y. Z., and WEN, X. S. Vibration reduction by using the idea of phononic crystals in a pipe-conveying fluid. Journal of Sound and Vibration, 318(1), 193-205(2008) [49] GAO, X. L. and ZHANG, G. Y. A microstructure- and surface energy-dependent third-order shear deformation beam model. Journal of Applied Mathematics and Physics, 66(4), 1871-1894(2015) |