[1] VAKAKIS, A. F., MANEVITCH, L. I., GENDELMAN, O., and BERGMAN, L. Dynamics of linear discrete systems connected to local, essentially non-linear attachments. Journal of Sound and Vibration, 264, 559–577(2003) [2] DING, H. and CHEN, L. Q. Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dynamics, 100, 3061–3107(2020) [3] WANG, J. J., ZHANG, C., LI, H. B., and LIU, Z. B. A vertical-vibro-impact-enhanced track bistable nonlinear energy sink for robust and comprehensive control of structures. Structural Control & Health Monitoring, 29, e2931(2022) [4] ZOU, D. L., LIU, G. Y., RAO, Z. S., TAN, T., ZHANG, W. M., and LIAO, W. H. A device capable of customizing nonlinear forces for vibration energy harvesting, vibration isolation, and nonlinear energy sink. Mechanical Systems and Signal Processing, 147, 107101(2021) [5] GENG, X. F., DING, H., WEI, K. X., and CHEN, L. Q. Suppression of multiple modal resonances of a cantilever beam by an impact damper. Applied Mathematics and Mechanics (English Edition), 41(3), 383–400(2020) https://doi.org/10.1007/s10483-020-2588-9 [6] CAO, Y., YAO, H., LI, H., and DOU, J. Torsional vibration dynamics of a gear-shafting system attaching a nonlinear energy sink. Mechanical Systems and Signal Processing, 176, 109172(2022) [7] GENG, X. F. and DING, H. Two-modal resonance control with an encapsulated nonlinear energy sink. Journal of Sound and Vibration, 520, 116667(2022) [8] GENG, X. F., DING, H., MAO, X. Y., and CHEN, L. Q. A ground-limited nonlinear energy sink. Acta Mechanica Sinica, 38, 521558(2022) [9] CHEN, Y. Y., SU, W. T., TESFAMARIAM, S., QIAN, Z. C., ZHAO, W., SHEN, C. Y., and ZHOU, F. L. Experimental testing and system identification of the sliding bistable nonlinear energy sink implemented to a four-story structure model subjected to earthquake excitation. Journal of Building Engineering, 61, 105226(2022) [10] LI, X., MOJAHED, A., CHEN, L. Q., BERGMAN, L. A., and VAKAKIS, A. F. Shock response mitigation of a large-scale structure by modal energy redistribution facilitated by a strongly nonlinear absorber. Acta Mechanica Sinica, 38, 121464(2022) [11] ZHANG, Z., DING, H., ZHANG, Y. W., and CHEN, L. Q. Vibration suppression of an elastic beam with boundary inerter-enhanced nonlinear energy sinks. Acta Mechanica Sinica, 37, 387–401(2021) [12] WANG, G. X., DING, H., and CHEN, L. Q. Performance evaluation and design criterion of a nonlinear energy sink. Mechanical Systems and Signal Processing, 169, 108770(2022) [13] GENG, X. F., DING, H., JING, X. J., MAO, X. Y., WEI, K. X., and CHEN, L. Q. Dynamic design of a magnetic-enhanced nonlinear energy sink. Mechanical Systems and Signal Processing, 185, 109813(2023) [14] SONG, W. Z., LIU, Z. E., LU, C. H., LI, B., and NIE, F. Q. Analysis of vibration suppression performance of parallel nonlinear energy sink. Journal of Vibration and Control (2022) https://doi.org/10.1177/107754632210858 [15] VAURIGAUD, B., SAVADKOOHI, A. T., and LAMARQUE, C. H. Efficient targeted energy transfer with parallel nonlinear energy sinks: theory and experiments. Journal of Computational and Nonlinear Dynamics, 6, 041005(2011) [16] VAURIGAUD, B., SAVADKOOHI, A. T., and LAMARQUE, C. H. Targeted energy transfer with parallel nonlinear energy sinks, part I: design theory and numerical results. Nonlinear Dynamics, 66, 763–780(2011) [17] SAVADKOOHI, A. T., VAURIGAUD, B., LAMARQUE, C. H., and PERNOT, S. Targeted energy transfer with parallel nonlinear energy sinks, part II: theory and experiments. Nonlinear Dynamics, 67, 37–46(2012) [18] ZHANG, Y. W., ZHANG, Z., CHEN, L. Q., YANG, T. Z., FANG, B., and ZANG, J. Impulseinduced vibration suppression of an axially moving beam with parallel nonlinear energy sinks. Nonlinear Dynamics, 82, 61–71(2015) [19] BOROSON, E., MISSOUM, S., MATTEI, P. O., and VERGEZ, C. Optimization under uncertainty of parallel nonlinear energy sinks. Journal of Sound and Vibration, 394, 451–464(2017) [20] CHEN, J. E., HE, W., ZHANG, W., YAO, M. H., LIU, J., and SUN, M. Vibration suppression and higher branch responses of beam with parallel nonlinear energy sinks. Nonlinear Dynamics, 91, 885–904(2018) [21] BERGEOT, B. and BELLIZZI, S. Steady-state regimes prediction of a multi-degree-of-freedom unstable dynamical system coupled to a set of nonlinear energy sinks. Mechanical Systems and Signal Processing, 131, 728–750(2019) [22] CHEN, J. N., ZHANG, W., LIU, J., and HU, W. H. Vibration absorption of parallel-coupled nonlinear energy sink under shock and harmonic excitations. Applied Mathematics and Mechanics (English Edition), 42(8), 1135–1154(2021) https://doi.org/10.1007/s10483-021-2757-6 [23] GUO, M. S. and ZHENG, G. T. Stigma as two degrees of freedom energy sink for flutter suppression. Journal of Sound and Vibration, 515, 116441(2021) [24] SINGH, A. and MOORE, K. J. Identification of multiple local nonlinear attachments using a single measurement case. Journal of Sound and Vibration, 513, 116410(2021) [25] ZHOU, K., DAI, H. L., ABDELKEFI, A., ZHOU, H. Y., WANG, L., and NI, Q. Cross-flowinduced transverse-torsional vibrations of slender structures mitigation via coupled controllers. International Journal of Non-Linear Mechanics, 142, 104000(2022) [26] ZHANG, W. Y., NIU, M. Q., and CHEN, L. Q. Vibration reduction of a Timoshenko beam with multiple parallel nonlinear energy sinks. Applied Sciences, 12, 9008(2022) [27] XIA, Y. W., RUZZENE, M., and ERTURK, A. Bistable attachments for wideband nonlinear vibration attenuation in a metamaterial beam. Nonlinear Dynamics, 102, 1285–1296(2020) [28] TSAKIRTZIS, S., PANAGOPOULOS, P. N., KERSCHEN, G., GENDELMAN, O., VAKAKIS, A. F., and BERGMAN, L. A. Complex dynamics and targeted energy transfer in linear oscillators coupled to multi-degree-of-freedom essentially nonlinear attachments. Nonlinear Dynamics, 48, 285–318(2007) [29] LEE, Y. S., VAKAKIS, A. F., BERGMAN, L. A., MCFARLAND, D. M., and KERSCHEN, G. Enhancing the robustness of aeroelastic instability suppression using multi-degree-of-freedom nonlinear energy sinks. AIAA Journal, 46, 1371–1394(2008) [30] GENDELMAN, O. V., SAPSIS, T., VAKAKIS, A. F., and BERGMAN, L. A. Enhanced passive targeted energy transfer in strongly nonlinear mechanical oscillators. Journal of Sound and Vibration, 330, 1–8(2011) [31] GRINBERG, I., LANTON, V., and GENDELMAN, O. V. Response regimes in linear oscillator with 2DOF nonlinear energy sink under periodic forcing. Nonlinear Dynamics, 69, 1889–1902(2012) [32] SAPSIS, T. P., QUINN, D. D., VAKAKIS, A. F., and BERGMAN, L. A. Effective stiffening and damping enhancement of structures with strongly nonlinear local attachments. Journal of Vibration and Acoustics-Transactions of the ASME, 134, 011016(2012) [33] WIERSCHEM, N. E., QUINN, D. D., HUBBARD, S. A., AL-SHUDEIFAT, M. A., MCFARLAND, D. M., LUO, J., FAHNESTOCK, L. A., SPENCER, B. F., VAKAKIS, A. F., and BERGMAN, L.A. Passive damping enhancement of a two-degree-of-freedom system through a strongly nonlinear two-degree-of-freedom attachment. Journal of Sound and Vibration, 331, 5393–5407(2012) [34] WIERSCHEM, N. E., LUO, J., AL-SHUDEIFAT, M., HUBBARD, S., OTT, R., FAHNESTOCK, L. A., QUINN, D. D., MCFARLAND, D. M., SPENCER, B. F., VAKAKIS, A., and BERGMAN, L. A. Experimental testing and numerical simulation of a six-story structure incorporating twodegree-of-freedom nonlinear energy sink. Journal of Structural Engineering, 140, 04014027(2014) [35] TAGHIPOUR, J. and DARDEL, M. Steady state dynamics and robustness of a harmonically excited essentially nonlinear oscillator coupled with a two-DOF nonlinear energy sink. Mechanical Systems and Signal Processing, 62-63, 164–182(2015) [36] KONG, X. R., LI, H. Q., and WU, C. Dynamics of 1-dof and 2-dof energy sink with geometrically nonlinear damping: application to vibration suppression. Nonlinear Dynamics, 91, 733–754(2018) [37] ZHANG, Y. F., KONG, X. R., YUE, C. F., and XIONG, H. Dynamic analysis of 1-dof and 2-dof nonlinear energy sink with geometrically nonlinear damping and combined stiffness. Nonlinear Dynamics, 105, 167–190(2021) [38] KHAZAEE, M., KHADEM, S. E., MOSLEMI, A., and ABDOLLAHI, A. A comparative study on optimization of multiple essentially nonlinear isolators attached to a pipe conveying fluid. Mechanical Systems and Signal Processing, 141, 106442(2020) [39] DA SILVA, J. A. I. and MARQUES, F. D. Multi-degree of freedom nonlinear energy sinks for passive control of vortex-induced vibrations in a sprung cylinder. Acta Mechanica, 232, 3917– 3937(2021) |