[1] MAHAPATRA, B. and BANDOPADHYAY, A. Electroosmosis of a viscoelastic fluid over non-uniformly charged surfaces: effect of fluid relaxation and retardation time. Physics of Fluids, 32(3), 032005 (2020) [2] SADEK, S. H. and PINHO, F. T. Electro-osmotic oscillatory flow of viscoelastic fluids in a microchannel. Journal of Non-Newtonian Fluid Mechanics, 266, 46-58 (2019) [3] CHAKRABORTY, S. and DAS, S. Streaming-field-induced convective transport and its influence on the electroviscous effects in narrow fluidic confinement beyond the Debye-Hückel limit. Physical Review E, 77(3), 037303 (2008) [4] DAS, S., GUHA, A., and MITRA, S. K. Exploring new scaling regimes for streaming potential and electroviscous effects in a nanocapillary with overlapping electric double layers. Analytica Chimica Acta, 804, 159-166 (2013) [5] FERRÁS, L. L., AFONSO, A., ALVES, M., NÓBREGA, J., and PINHO, F. Electro-osmotic and pressure-driven flow of viscoelastic fluids in microchannels: analytical and semi-analytical solutions. Physics of Fluids, 28(9), 093102 (2016) [6] GHOSH, U. Electrokinetic effects in helical flow of non-linear viscoelastic fluids. Physics of Fluids, 32(5), 052004 (2020) [7] MAHAPATRA, B. and BANDOPADHYAY, A. Numerical analysis of combined electroosmotic-pressure driven flow of a viscoelastic fluid over high zeta potential modulated surfaces. Physics of Fluids, 33(1), 12001 (2021) [8] SARMA, R., DEKA, N., SARMA, K., and MONDAL, P. K. Electroosmotic flow of Phan-Thien-Tanner fluids at high zeta potentials: an exact analytical solution. Physics of Fluids, 30(6), 062001 (2018) [9] FAN, B., BHATTACHARYA, A., and BANDARU, P. R. Enhanced voltage generation through electrolyte flow on liquid-filled surfaces. Nature Communications, 9, 4050 (2018) [10] ALI, N., HUSSAIN, S., and ULLAH, K. Theoretical analysis of two-layered electro-osmotic peristaltic flow of FENE-P fluid in an axisymmetric tube. Physics of Fluids, 32(2), 023105 (2020) [11] SCHNITZER, O. and YARIV, E. Streaming-potential phenomena in the thin-Debye-layer limit. Part 3. Shear-induced electroviscous repulsion. Journal of Fluid Mechanics, 786, 84-109 (2016) [12] SIRIA, A., PONCHARAL, P., BIANCE, A. L., FULCRAND, R., BLASE, X., PURCELL, S. T., and PURCELL, L. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. nature, 794(7438), 455-458 (2013) [13] OSTERLE, J. F. Electrokinetic energy conversion. Journal of Applied Mechanics, 31, 161-164 (1964) [14] DAIGUJI, H., YANG, P., SZERI, A., and MAJUMDAR, A. Electrochemomechanical energy conversion in nanofluidic channels. Nano Letters, 4, 2315-2321 (2004) [15] VAN DER HEYDEN, F. H., BONTHUIS, D. J., STEIN, D., MEYER, C., and DEKKER, C. Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Letters, 6, 2232-2237 (2006) [16] VAN DER HEYDEN, F. H., BONTHUIS, D. J., STEIN, D., MEYER, C., and DEKKER, C. Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Letters, 7, 1022-1025 (2007) [17] WANG, M. and KANG, Q. Electrochemomechanical energy conversion efficiency in silica nanochannels. Microfluidics and Nanofluidics, 9(2-3), 181-190 (2010) [18] CHANG, C. C. and YANG, R. J. Electrochemomechanical energy conversion efficiency in silica nanochannels. Applied Physics Letters, 99(8), 083102 (2011) [19] PENNATHUR, S., EIJKEL, J. C. T., and VAN DEN BERG, A. Energy conversion in microsystems: is there a role for micro/nanofluidics? Lab on a Chip, 7(10), 1234-1237 (2007) [20] YANG, J., LU, F., KOSTIUK, L. W., and KWOK, D. Y. Electrokinetic microchannel battery by means of electrokinetic and microfluidic phenomena. Journal of Micromechanics and Microengineering, 13, 963-970 (2003) [21] DAIGUJI, H., OKA, Y., ADACHI, T., and SHIRONO, K. Theoretical study on the efficiency of nanofluidic batteries. Electrochemistry Communications, 8, 1796-1800 (2006) [22] ZHANG, R., WANG, S., YEH, M. H., PAN, C., LIN, L., YU, R., ZHANG, Y., ZHENG, L., JIAO, Z., and WANG, Z. L. A streaming potential/current-based microfluidic direct current generator for self-powered nanosystems. Advanced Materials, 27, 6482-6487 (2015) [23] CHANDA, S., SINHA, S., and DAS, S. Streaming potential and electroviscous effects in soft nanochannels: towards designing more efficient nanofluidic electrochemomechanical energy converters. Soft Matter, 10, 7558-7568 (2014) [24] PATWARY, J., CHEN, G., and DAS, S. Efficient electrochemomechanical energy conversion in nanochannels grafted with polyelectrolyte layers with pH-dependent charge density. Microfluidics and Nanofluidics, 20, 37 (2016) [25] KORANLOU, A., ASHRAFIZADEH, S. N., and SADEGHI, A. Enhanced electrokinetic energy harvesting from soft nanochannels by the inclusion of ionic size. Journal of Physics D: Applied Physics, 52, 155502 (2019) [26] XUAN, X. and LI, D. Thermodynamic analysis of electrokinetic energy conversion. Journal of Power Sources, 156, 677-684 (2006) [27] GOSWAMI, P. and CHAKRABORTY, S. Energy transfer through streaming effects in time-periodic pressure-driven nanochannel flows with interfacial slip. Langmuir, 26, 581-590 (2010) [28] BANDOPADHYAY, A. and CHAKRABORTY, S. Giant augmentations in electro-hydro-dynamic energy conversion efficiencies of nanofluidic devices using viscoelastic fluids. Applied Physics Letters, 101, 043905 (2012) [29] NGUYEN, T., XIE, Y., VREEDE, L. J. D., VAN DEN BERG, A., and EIJKEL, J. C. T. Highly enhanced energy conversion from the streaming current by polymer addition. Lab on a Chip, 13, 3210-3216 (2013) [30] MEI, L., YEH, L. H., and QIAN, S. Buffer anions can enormously enhance the electrokinetic energy conversion in nanofluidics with highly overlapped double layers. Nano Energy, 32, 374-381 (2017) [31] DING, Z. D. and JIAN, Y. J. Electrokinetic oscillatory flow and energy conversion of viscoelastic fluids in microchannels: a linear analysis. Journal of Fluid Mechanics, 919, A20 (2021) [32] DING, Z., JIAN, Y., and TAN, W., Electrokinetic energy conversion of two-layer fluids through nanofluidic channels. Journal of Fluid Mechanics, 863, 1062-1090 (2019) [33] ECKMANN. D. and GROTBERG, J. Experiments on transition to turbulence in oscillatory pipe flow. Journal of Fluid Mechanics, 222, 329-350 (1991) [34] CASANELLAS, L. and ORTÍN, J. Laminar oscillatory flow of Maxwell and Oldroyd-B fluids: theoretical analysis. Journal of Non-Newtonian Fluid Mechanics, 166, 1315-1326 (2011) [35] DEL RÍO, J., DE HARO, M. L., and WHITAKER, S. Enhancement in the dynamic response of a viscoelastic fluid flowing in a tube. Physical Review E, 58, 6323-6327 (1998) [36] DING, Z. and JIAN, Y. Resonance behaviors in periodic viscoelastic electrokinetic flows: a universal Deborah number. Physics of Fluids, 33, 032023 (2021) [37] OLTHUIS, W., SCHIPPERS, B., EIJKEL, J. C. T., and VAN DEN BERG, A. Energy from streaming current and potential. Sensors and Actuators B: Chemical, 111-112, 385-389 (2005) |