[1] BIAN, Y. J., LI, P. H., YANG, F., WANG, P., LI, W. W., and FAN, H. L. Deformation mode and energy absorption of polycrystal-inspired square-cell lattice structures. Applied Mathematics and Mechanics (English Edition), 41(10), 1561-1582(2020) https://doi.org/10.1007/s10483-020-2648-8 [2] ZHANG, J. X. and GUO, H. Y. Low-velocity impact of rectangular foam-filled fiber metal laminate tubes. Applied Mathematics and Mechanics (English Edition), 42(12), 1733-1742(2021) https://doi.org/10.1007/s10483-021-2799-7 [3] WANG, T., AN, J. H., HE, H., WEN, X., and XI, X. L. A novel 3D impact energy absorption structure with negative Poisson's ratio and its application in aircraft crashworthiness. Composite Structures, 262, 113663(2021) [4] LU, H., WANG, X. P., and CHEN, T. N. In-plane dynamics crushing of a combined auxetic honeycomb with negative Poisson's ratio and enhanced energy absorption. Thin-Walled Structures, 160, 107366(2021) [5] LINFORTH, S., NGO, T., TRAN, P., RUAN, D., and ODISH, R. Investigation of the auxetic oval structure for energy absorption through quasi-static and dynamic experiments. International Journal of Impact Engineering, 147, 103741(2021) [6] DALELA, S., BALAJI, P. S., and JENA, D. P. A review on application of mechanical metamaterials for vibration control. Mechanics of Advanced Materials and Structures, 29(22), 3237-3262(2022) [7] HRISHIKESH, G. M., SHAMMO, D., ARAVIND, K., HARIPRASAD, M. P., and BALAKRISHNAN, S. Proposed auxetic cluster designs for lightweight structural beams with improved load bearing capacity. Engineering Structures, 260, 114241(2022) [8] QI, C., JIANG, F., YANG, S., REMENNIKOV, A., CHEN, S., and DING, C. Dynamic crushing response of novel re-entrant circular auxetic honeycombs:numerical simulation and theoretical analysis. Aerospace Science and Technology, 124, 107548(2022) [9] HANNA, B., ADAMS, R., TOWNSEND, S., ROBINSON, M., SOE, S., STEWART, M., BUREK, R., and THEOBALD, P. Auxetic metamaterial optimisation for head impact mitigation in American football. International Journal of Impact Engineering, 157, 103991(2021) [10] CHOUDHRY, N. K., PANDA, B., and KUMAR, S. In-plane energy absorption characteristics of a modified re-entrant auxetic structure fabricated via 3D printing. Composites Part B:Engineering, 228, 109437(2022) [11] AN, M. R., WANG, L., LIU, H. T., and REN, F. G. In-plane crushing response of a novel bidirectional re-entrant honeycomb with two plateau stress regions. Thin-Walled Structures, 170, 108530(2022) [12] CHEN, Y. and WANG, Z. W. In-plane elasticity of the re-entrant auxetic hexagonal honeycomb with hollow-circle joint. Aerospace Science and Technology, 123, 107432(2022) [13] MATHEUS, B. F., JOÃO, L. J. P., GUILHERME, A. O., LUCAS, R. R. D. S., SEBASTIÃO, S. C. J., and GUILHERME, F. G. A review on the energy absorption response and structural applications of auxetic structures. Mechanics of Advanced Materials and Structures, 29, 3237-3262(2022) [14] FATIH, U., HALIT, S. T., and FABRIZIO, S. High-velocity impact resistance of doubly curved sandwich panels with re-entrant honeycomb and foam core. International Journal of Impact Engineering, 165, 104230(2022) [15] WANG, H., LU, Z. X., YANG, Z. Y., and LI, X. A novel re-entrant auxetic honeycomb with enhanced in-plane impact resistance. Composite Structures, 208, 758-770(2019) [16] KRISHNA, P. L., VELMURUGAN, R., JAYAGANTHAN, R., ZHANYUAN, G., and RUAN, D. Quasi-static and dynamic compression behaviors of a novel auxetic structure. Composite Structures, 254, 112853(2020) [17] JIANG, F., YANG, S., QI, C., and LIU, H. T. Two plateau characteristics of re-entrant auxetic honeycomb along concave direction. Thin-Walled Structures, 179, 109665(2022) [18] LIM, T. C. Metacomposite structure with sign-changing coefficients of hygrothermal expansions inspired by Islamic motif. Composite Structures, 251, 12660(2020) [19] LIM, T. C. Composite metamaterial square grids with sign-flipping expansion coefficients leading to a type of Islamic design. SN Applied Sciences, 2(5), 918(2020) [20] JIANG, H. Y., REN, Y. R., JIN, Q. D., ZHU, G. H., HU, Y. S., and CHENG, F. Crashworthiness of novel concentric auxetic reentrant honeycomb with negative Poisson's ratio biologically inspired by coconut palm. Thin-Walled Structures, 154, 106911(2020) [21] DENG, T. C., WEN, G. L., DING, H., LU, Z. Q., and CHEN, L. Q. A bio-inspired isolator based on characteristics of quasi-zero stiffness and bird multi-layer neck. Mechanical Systems and Signal Processing, 145, 106967(2020) [22] PARK, Y. J., GIANMARCO, V., and KENNETH, J. L. Bio-inspired active skins for surface morphing. Scitific Reports, 9(1), 18609(2019) [23] MA, Q., CHENG, H. Y., JANG, K. I., LUAN, H. W., HWANG, K. C., ROGERS, J. A., HUANG, Y. G., and ZHANG, Y. H. A nonlinear mechanics model of bio-inspired hierarchical lattice materials consisting of horseshoe microstructures. Journal of the Mechanics and Physics of Solids, 90, 179-202(2016) [24] LIM, T. C. Metacomposite with auxetic and in situ sign reversible thermal expansivity upon temperature fluctuation. Composites Communications, 19, 30-36(2020) [25] ZHANG, Z. W., TIAN, R. L., ZHANG, X. L., WEI, F. Y., and YANG, X. W. A novel butterfly-shaped auxetic structure with negative Poisson's ratio and enhanced stiffness. Journal of Materials Science, 56(25), 14139-14156(2021) [26] HA, N. S. and LU, G. X. A review of recent research on bio-inspired structures and materials for energy absorption applications. Composites Part B:Engineering, 181, 107496(2020) [27] RAFSANJANI, A. and PASINI, D. Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs. Extreme Mechanics Letters, 9, 291-296(2016) [28] LIM, T. C. An auxetic system based on interconnectedy-elements inspired by Islamic geometric patterns. Symmetry, 13(5), 865(2021) [29] ZHANG, X. L., TIAN, R. L., ZHANG, Z. W., LI, G. J., and FENG, W. J. In-plane elasticity of a novel vertical strut combined re-entrant honeycomb structure with negative Poisson's ratio. Thin-Walled Structures, 163, 107634(2021) [30] ZHANG, X. L., HAO, H. N., TIAN, R. L., XUE, Q., GUAN, H. T., and YANG, X. W. Quasi-static compression and dynamic crushing behaviors of novel hybrid re-entrant auxetic metamaterials with enhanced energy-absorption. Composite Structures, 288, 115399(2022) [31] ALOMARAH, A., MASOOD, S. H., SBARSKI, I., FAISAL, B., GAO, Z., and RUAN, D. Compressive properties of 3D printed auxetic structures:experimental and numerical studies. Virtual and Physical Prototyping, 15(1), 1-21(2019) [32] ZOU, Z., REID, S. R., TAN, P. J., LI, S., and HARRIGAN, J. J. Dynamic crushing of honeycombs and features of shock fronts. International Journal of Impact Engineering, 36(1), 165-176(2009) [33] XIAO, D. B., KANG, X., LI, Y., WU, W. W., LU, J. R., ZHAO, G. P., and FANG, D. N. Insight into the negative Poisson's ratio effect of metallic auxetic reentrant honeycomb under dynamic compression. Materials Science and Engineering:A, 763, 138151(2019) [34] LIU, W. Y., WANG, N. L., LUO, T., and LIN, Z. Q. In-plane dynamic crushing of re-entrant auxetic cellular structure. Materials&Design, 100, 84-91(2016) [35] LI, X., GAO, L. B., ZHOU, W. Z., WANG, Y. J., and LU, Y. Novel 2D metamaterials with negative Poisson's ratio and negative thermal expansion. Extreme Mechanics Letters, 30, 100498(2019) [36] RAD, M. S., HATAMI, H., ALIPOURI, R., NEJAD, A. F., and OMIDINASAB, F. Determination of energy absorption in different cellular auxetic structures. Mechanics&Industry, 20(302), 1-11(2019) [37] QI, C., JIANG, F., and YANG, S. Advanced honeycomb designs for improving mechanical properties:a review. Composites Part B:Engineering, 227, 09393(2021) [38] ZHANG, J. J., LU, G. X., and YOU, Z. Large deformation and energy absorption of additively manufactured auxetic materials and structures:a review. Composites Part B:Engineering, 201, 108340(2020) |