[1] VETTER, J., NOVÁK, P., WAGNER, M. R., VEIT, C., MÖLLER, K. C., BESENHARD, J. O., WINTER, M., WOHLFAHRT-MEHRENS, M., VOGLER, C., and HAMMOUCHE, A. Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 147, 269-281(2005) [2] PALACÍN, M. R. and DE GUIBERT, A. Why do batteries fail? Science, 351, 1253292(2016) [3] GOODENOUGH, J. B. and PARK, K. S. The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society, 135, 1167-1176(2013) [4] ANDRE, D., KIM, S. J., LAMP, P., LUX, S. F., MAGLIA, F., PASCHOS, O., and STIASZNY, B. Future generations of cathode materials: an automotive industry perspective. Journal of Materials Chemistry A, 3, 6709-6732(2015) [5] LU, B., NING, C. Q., SHI, D. X., ZHAO, Y. F., and ZHANG, J. Q. Review on electrode-level fracture in lithium-ion batteries. Chinese Physics B, 29, 026201(2020) [6] KIM, J. H., WOO, S. C., PARK, M. S., KIM, K. J., YIM, T., KIM, J. S., and KIM, Y. J. Capacity fading mechanism of LiFePO4-based lithium secondary batteries for stationary energy storage. Journal of Power Sources, 229, 190-197(2013) [7] YANG, L., CHEN, H. S., JIANG, H. Q., WEI, Y. J., SONG, W. L., and FANG, D. N. Failure mechanisms of 2D silicon film anodes: in situ observations and simulations on crack evolution. Chemical Communications, 54, 3997-4000(2018) [8] ZHAO, C. H., WADA, T., DE ANDRADE, V., GÜRSOY, D., KATO, H., and CHEN-WIEGART,Y. K. Imaging of 3D morphological evolution of nanoporous silicon anode in lithium ion battery by X-ray nano-tomography. Nano Energy, 52, 381-390(2018) [9] SUO, Z. G. and HUTCHINSON, J. W. Interface crack between two elastic layers. International Journal of Fracture, 43, 1-18(1990) [10] WEN, J. C., WEI, Y. J., and CHENG, Y. T. Stress evolution in elastic-plastic electrodes during electrochemical processes: a numerical method and its applications. Journal of the Mechanics and Physics of Solids, 116, 403-415(2018) [11] GUO, Z. S., LIU, C., LU, B., and FENG, J. M. Theoretical and experimental study on the interfacial adhesive properties of graphite electrodes in different charging and aging states. Carbon, 150, 32-42(2019) [12] LU, B., YUAN, Y. N., BAO, Y. H., ZHAO, Y. F., SONG, Y. C., and ZHANG, J. Q. Mechanicsbased design of lithium-ion batteries: a perspective. Physical Chemistry Chemical Physics, 24, 29279-29297(2022) [13] ZOU, F. and MANTHIRAM, A. A Review of the design of advanced binders for high-performance batteries. Advanced Energy Materials, 10, 2002508(2020) [14] CHEN, Y., CHEN, H. F., and LUAN, W. L. Shakedown, ratcheting and fatigue analysis of cathode coating in lithium-ion battery under steady charging-discharging process. Journal of the Mechanics and Physics of Solids, 150, 104366(2021) [15] KUANG, Y. D., CHEN, C. J., KIRSCH, D., and HU, L. B. Thick electrode batteries: principles, opportunities, and challenges. Advanced Energy Materials, 9, 1901457(2019) [16] YANG, F. Q. Criterion for insertion-induced microcracking and debonding of thin films. Journal of Power Sources, 196, 465-469(2011) [17] HAFTBARADARAN, H., XIAO, X. C., VERBRUGGE, M. W., and GAO, H. J. Method to deduce the critical size for interfacial delamination of patterned electrode structures and application to lithiation of thin-film silicon islands. Journal of Power Sources, 206, 357-366(2012) [18] LU, B., ZHAO, Y. F., SONG, Y. C., and ZHANG, J. Q. Analytical model on lithiation-induced interfacial debonding of an active layer from a rigid substrate. Journal of Applied Mechanics, 83, 121009(2016) [19] LU, B., SONG, Y. C., GUO, Z. S., and ZHANG, J. Q. Modeling of progressive delamination in a thin film driven by diffusion-induced stresses. International Journal of Solids and Structures, 50, 2495-2507(2013) [20] PAL, S., DAMLE, S. S., PATEL, S. H., DATTA, M. K., KUMTA, P. N., and MAITI, S. Modeling the delamination of amorphous-silicon thin film anode for lithium-ion battery. Journal of Power Sources, 246, 149-159(2014) [21] LIU, M. Finite element analysis of lithiation-induced decohesion of a silicon thin film adhesively bonded to a rigid substrate under potentiostatic operation. International Journal of Solids and Structures, 67-68, 263-271(2015) [22] LU, B., SONG, Y. C., and ZHANG, J. Q. Time to delamination onset and critical size of patterned thin film electrodes of lithium ion batteries. Journal of Power Sources, 289, 168-183(2015) [23] ZHAO, K. J., PHARR, M., HARTLE, L., VLASSAK, J. J., and SUO, Z. G. Fracture and debonding in lithium-ion batteries with electrodes of hollow core-shell nanostructures. Journal of Power Sources, 218, 6-14(2012) [24] SONG, J. X., ZHOU, M., YI, R., XU, T., GORDIN, M. L., TANG, D. H., YU, Z., REGULA, M., and WANG, D. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Advanced Functional Materials, 24, 5904-5910(2014) [25] ZHANG, L. Q., LIU, X. H., LIU, Y., HUANG, S., ZHU, T., GUI, L., MAO, S. X., YE, Z. Z., WANG, C. M., SULLIVAN, J. P., and HUANG, J. Y. Controlling the lithiation-induced strain and charging rate in nanowire electrodes by coating. ACS Nano, 5, 4800-4809(2011) [26] XIAO, X., LIU, P., VERBRUGGE, M. W., HAFTBARADARAN, H., and GAO, H. Improved cycling stability of silicon thin film electrodes through patterning for high energy density lithium batteries. Journal of Power Sources, 196, 1409-1416(2011) [27] LI, Y., LU, B., GUO, B. K., SONG, Y. C., and ZHANG, J. Q. Partial lithiation strategies for suppressing degradation of silicon composite electrodes. Electrochimica Acta, 295, 778-786(2019) [28] SZCZECH, J. R. and JIN, S. Nanostructured silicon for high capacity lithium battery anodes. Energy & Environmental Science, 4, 56-72(2011) [29] QIAN, Y. F., LU, B., BAO, Y. H., ZHAO, Y. F., SONG, Y., and ZHANG, J. Q. Prelithiation design for suppressing delamination in lithium-ion battery electrodes. Applied Mathematics and Mechanics (English Edition), 42(12), 1703-1716(2021) https://doi.org/10.1007/s10483-021-2800-8 [30] KIM, H. J., CHOI, S. H., LEE, S. J., SEO, M. W., LEE, J. G., DENIZ, E., LEE, Y. J., KIM, E. K., and CHOI, J. W. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano Letters, 16, 282-288(2016) [31] HAO, F. and FANG, D. N. Reducing diffusion-induced stresses of electrode-collector bilayer in lithium-ion battery by pre-strain. Journal of Power Sources, 242, 415-420(2013) [32] HAO, W. Q. and XIE, J. M. Reducing diffusion-induced stress of bilayer electrode system by introducing pre-strain in lithium-ion battery. Journal of Electrochemical Energy Conversion and Storage, 18, 020909(2021) [33] ROMOLI, L., LUTEY, A. H. A., and LAZZINI, G. Laser texturing of Li-ion battery electrode current collectors for improved active layer interface adhesion. CIRP Annals, 71, 481-484(2022) [34] SHIN, D. Y., PARK, D. H., and AHN, H. J. Interface modification of an Al current collector for ultrafast lithium-ion batteries. Applied Surface Science, 475, 519-523(2019) [35] LIU, M., GAO, C. H., and YANG, F. Q. Analysis of diffusion-induced delamination of an elasticperfectly plastic film on a deformable substrate under potentiostatic operation. Modelling and Simulation in Materials Science and Engineering, 25, 065019(2017) [36] PAN, Z. X., LI, W., and XIA, Y. Experiments and 3D detailed modeling for a pouch battery cell under impact loading. Journal of Energy Storage, 27, 101016(2020) [37] ZHU, J. E., ZHANG, X. W., SAHRAEI, E., and WIERZBICKI, T. Deformation and failure mechanisms of 18650 battery cells under axial compression. Journal of Power Sources, 336, 332-340(2016) [38] HE, Y., YU, X. Q., LI, G., WANG, R., LI, H., WANG, Y. L., GAO, H. J., and HUANG, X. J. Shape evolution of patterned amorphous and polycrystalline silicon microarray thin film electrodes caused by lithium insertion and extraction. Journal of Power Sources, 216, 131-138(2012) [39] LI, D. W., WANG, Y. K., HU, J. Z., LU, B., CHENG, Y. T., and ZHANG, J. Q. In situ measurement of mechanical property and stress evolution in a composite silicon electrode. Journal of Power Sources, 366, 80-85(2017) [40] LI, D. W. and WANG, Y. K. In-situ measurements of mechanical property and stress evolution of commercial graphite electrode. Materials & Design, 194, 108887(2020) [41] LU, B., NING, C. Q., ZHAO, Y. F., SONG, Y. C., and ZHANG, J. Q. A Comparative study of cohesive law shapes in analytical modeling of interfacial debonding in lithium-ion battery electrodes. Journal of Applied Mechanics, 86, 101006(2019) [42] HE, Y. L., HU, H. J., SONG, Y. C., GUO, Z. S., LIU, C., and ZHANG, J. Q. Efiects of concentration-dependent elastic modulus on the diffusion of lithium ions and diffusion induced stress in layered battery electrodes. Journal of Power Sources, 248, 517-523(2014) [43] WU, W., XIAO, X. R., WANG, M., and HUANG, X. S. A Microstructural resolved model for the stress analysis of lithium-ion batteries. Journal of The Electrochemical Society, 161, A803-A813(2014) [44] WEISS, B., GRÖGER, V., KHATIBI, G., BETZWAR KOTAS, A., ZIMPRICH, P., STICKLER, R., and ZAGAR, B. Characterization of mechanical and thermal properties of thin Cu foils and wires. Sensors and Actuators A-Physical, 99, 172-182(2002) [45] YE, Y. S., CHOU, L. Y., LIU, Y. Y., WANG, H., LEE, H. K., HUANG, W. X., WAN, J. Y., LIU, K., ZHOU, G. M., YANG, Y. F., YANG, A. K., XIAO, X., GAO, X., BOYLE, D. T., CHEN, H., ZHANG, W. B., KIM, S. C., and CUI, Y. Ultralight and flre-extinguishing current collectors for high-energy and high-safety lithium-ion batteries. Nature Energy, 5, 786-793(2020) [46] WEI, D., SHEN, W., XU, T., LI, K., YANG, L., ZHOU, Y., ZHONG, M., YANG, F., XU, X., WANG, Y., ZHENG, M., ZHANG, Y., LI, Q., YONG, Z., LI, H., and WANG, Q. Ultra-flexible and foldable gel polymer lithium-ion batteries enabling scalable production. Materials Today Energy, 23, 100889(2022) [47] MCDOWELL, M. T., LEE, S. W., NIX, W. D., and CUI, Y. 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Advanced Materials, 25, 4966-4985(2013) |