[1] ZHOU, S. M., SHENG, L. P., and SHEN, Z. B. Transverse vibration of circular graphene sheetbased mass sensor via nonlocal Kirchhoff plate theory. Computational Materials Science, 86, 73–78(2014) [2] MARTIN, P. A. and HULL, A. J. Dynamic response of an infinite thin plate loaded with concentrated masses. Wave Motion, 98, 102643(2020) [3] HU, Y. L., LIANG, X., and WANG, W. A theoretical solution of resonant circular diaphragm-type piezoactuators with added mass loads. Sensors and Actuators A: Physical, 258, 74–87(2017) [4] YANG, Y. Y. W., WANG, S., STEIN, P., XU, B. X., and YANG, T. Q. Vibration-based energy harvesting with a clamped piezoelectric circular diaphragm: analysis and identification of optimal structural parameters. Smart Materials and Structures, 26(4), 045011(2017) [5] NAYFEH, A. H. and MOOK, D. T. Nonlinear Oscillations, John Wiley and Sons, New York (1979) [6] SATHYAMOORTHY, M. Nonlinear vibration analysis of plates: review and survey of current developments. Applied Mechanics Reviews, 40(11), 1553–1561(1987) [7] AMABILI, M. Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University Press, Cambridge (2008) [8] CIVALEK, Ö. Geometrically nonlinear dynamic and static analysis of shallow spherical shell resting on two-parameters elastic foundations. International Journal of Pressure Vessels and Piping, 113, 1–9(2014) [9] THOMSON, W. and DAHLEH, M. Theory of Vibration with Applications, 5th ed., Prentice Hall, Upper Saddle River (1998) [10] MEIROVITCH, L. Fundamentals of Vibrations, McGraw-Hill, Boston (2001) [11] ZHANG, Y. X. and YANG, C. H. Recent developments in finite element analysis for laminated composite plates. Composite Structures, 88(1), 147–157(2009) [12] KAZANCI, Z. A review on the response of blast loaded laminated composite plates. Progress in Aerospace Sciences, 81, 49–59(2016) [13] MAJI, A. and MAHATO, P. K. Development and applications of shear deformation theories for laminated composite plates: an overview. Journal of Thermoplastic Composite Materials, 35(12), 2576–2619(2020) [14] HAMMAMI, M., El MAHI, A., KARRA, C., and HADDAR, M. Experimental analysis of the linear and nonlinear behaviour of composites with delaminations. Applied Acoustics, 108, 31–39(2016) [15] LU, T. Y., CHEN, X. H., WANG, H., ZHANG, L., and ZHOU, Y. H. A novel experiment-based approach on nonlinear bending analysis of thermoplastic composite laminates. Composites Part B: Engineering, 209, 108611(2021) [16] ARANI, A. G. and JAFARI, G. S. Nonlinear vibration analysis of laminated composite Mindlin micro/nano-plates resting on orthotropic Pasternak medium using DQM. Applied Mathematics and Mechanics (English Edition), 36(8), 1033–1044(2015) https://doi.org/10.1007/s10483-015-1969-7 [17] SOLANKI, M. K., KUMAR, R., and SINGH, J. Flexure analysis of laminated plates using multiquadratic RBF based meshfree method. International Journal of Computational Methods, 15(6), 1850049(2018) [18] ESMAEILZADEH, M., KADKHODAYAN, M., MOHAMMADI, S., and TURVEY, G. J. Nonlinear dynamic analysis of moving bilayer plates resting on elastic foundations. Applied Mathematics and Mechanics (English Edition), 41(3), 439–458(2020) https://doi.org/10.1007/s10483-020-2587-8 [19] ZHOU, Y. and ZHANG, W. Double Hopf bifurcation of composite laminated piezoelectric plate subjected to external and internal excitations. Applied Mathematics and Mechanics (English Edition), 38(5), 689–706(2017) https://doi.org/10.1007/s10483-017-2196-9 [20] SHEN, H. S., XIANG, Y., and FAN, Y. A novel technique for nonlinear dynamic instability analysis of FG-GRC laminated plates. Thin-Walled Structures, 139, 389–397(2019) [21] WANG, X., XUE, C. X., and LI, H. T. Nonlinear primary resonance analysis for a coupled thermopiezoelectric-mechanical model of piezoelectric rectangular thin plates. Applied Mathematics and Mechanics (English Edition), 40(8), 1155–1168(2019) https://doi.org/10.1007/s10483-019-2510-6 [22] ZHENG, Y., HUANG, B., YI, L., MA, T., XIE, L., and WANG, J. Nonlinear thicknessshear vibration of an infinite piezoelectric plate with flexoelectricity based on the method of multiple scales. Applied Mathematics and Mechanics (English Edition), 43(5), 653–666(2022) https://doi.org/10.1007/s10483-022-2842-7 [23] ARSHID, E. and KHORSHIDVAND, A. R. Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method. Thin-Walled Structures, 125, 220–233(2018) [24] WANG, K. F., WANG, B. L., XU, M. H., and YU, A. B. Influences of surface and interface energies on the nonlinear vibration of laminated nanoscale plates. Composite Structures, 183, 423–433(2018) [25] ELMORABIE, K. M., ZAKARIA, K., and SIRWAH, M. A. Nonlinear instability of a thin laminated composite circular plate subjected to a tensile periodic load. Acta Mechanica, 231(12), 5213–5238(2020) [26] GOLMAKANI, M. E. and MEHRABIAN, M. Nonlinear bending analysis of ring-stiffened circular and annular general angle-ply laminated plates with various boundary conditions. Mechanics Research Communications, 59, 42–50(2014) [27] MEHRABIAN, M. and GOLMAKANI, M. E. Nonlinear bending analysis of radial-stiffened annular laminated sector plates with dynamic relaxation method. Computers & Mathematics with Applications, 69(10), 1272–1302(2015) [28] SHOOSHTARI, A. and DALIR, M. A. Nonlinear free vibration analysis of clamped circular fiber metal laminated plates. Scientia Iranica, 22(3), 813–824(2015) [29] ERSOY, H., MERCAN, K., and CIVALEK, Ö. Frequencies of FGM shells and annular plates by the methods of discrete singular convolution and differential quadrature methods. Composite Structures, 183, 7–20(2018) [30] MERCAN, K., BALTACIOGLU, A. K., and CIVALEK, Ö. Free vibration of laminated and FGM/CNT composites annular thick plates with shear deformation by discrete singular convolution method. Composite Structures, 186, 139–153(2018) [31] KARIMI, M. H. and FALLAH, F. Analytical non-linear analysis of functionally graded sandwich solid/annular sector plates. Composite Structures, 275, 114420(2021) [32] JAVANI, M., KIANI, Y., and ESLAMI, M. R. Geometrically nonlinear free vibration of FGGPLRC circular plate on the nonlinear elastic foundation. Composite Structures, 261, 113515(2021) [33] HAGHANI, A., MONDALI, M., and FAGHIDIAN, S. A. Linear and nonlinear flexural analysis of higher-order shear deformation laminated plates with circular delamination. Acta Mechanica, 229(4), 1631–1648(2017) [34] CHAI, Q., WANG, Y., and TENG, M. Nonlinear free vibration of spinning cylindrical shells with arbitrary boundary conditions. Applied Mathematics and Mechanics (English Edition), 43(8), 1203–1218(2022) https://doi.org/10.1007/s10483-022-2892-7 [35] YUAN, T. C., YANG, J., and CHEN, L. Q. Experimental identification of hardening and softening nonlinearity in circular laminated plates. International Journal of Non-Linear Mechanics, 95, 296–306(2017) [36] CHIANG, D. C. and CHEN, S. S. H. Large amplitude vibration of a circular plate with concentric rigid mass. Journal of Applied Mechanics, 39, 577–583(1972) [37] RAJU, K. K. Large amplitude vibrations of circular plates carrying a concentrated mass. Journal of Sound and Vibration, 50(2), 305–308(1977) [38] HUANG, C. L. D. and WALKER, H. S., JR. Non-linear vibration of a hinged circular plate with a concentric rigid mass. Journal of Sound and Vibration, 126(1), 9–17(1988) [39] HUANG, C. L. D. and HUANG, S. T. Finite element analysis of non-linear vibration of a circular plate with a concentric rigid mass. Journal of Sound and Vibration, 131, 215–227(1989) [40] LI, S. R., ZHOU, Y. H., and SONG, X. Non-linear vibration and thermal buckling of an orthotropic annular plate with a centric rigid mass. Journal of Sound and Vibration, 251, 141–152(2002) [41] CHEN, L. Q., LI, X., LU, Z. Q., ZHANG, Y. W., and DING, H. Dynamic effects of weights on vibration reduction by a nonlinear energy sink moving vertically. Journal of Sound and Vibration, 451, 99–119(2019) [42] LI, X., DING, H., and CHEN, L. Q. Effects of weights on vibration suppression via a nonlinear energy sink under vertical stochastic excitations. Mechanical Systems and Signal Processing, 173, 109073(2022) [43] WANG, G. X., DING, H., and CHEN, L. Q. Dynamic effect of internal resonance caused by gravity on the nonlinear vibration of vertical cantilever beams. Journal of Sound and Vibration, 474, 115265(2020) [44] CHEN, W., HU, Z. Y., DAI, H. L., and WANG, L. Extremely large-amplitude oscillation of soft pipes conveying fluid under gravity. Applied Mathematics and Mechanics (English Edition), 41(9), 1381–1400(2020) https://doi.org/10.1007/s10483-020-2646-6 [45] AMABILI, M. Geometrically nonlinear vibrations of rectangular plates carrying a concentrated mass. Journal of Sound and Vibration, 329, 4501–4514(2010) [46] AMABILI, M. and CARRA, S. Experiments and simulations for large-amplitude vibrations of rectangular plates carrying concentrated masses. Journal of Sound and Vibration, 331(1), 155– 166(2012) [47] NAYFEH, A. H. and PAI, P. F. Linear and Nonlinear Structural Mechanics, John Wiley and Sons, New York, 388–392(2004) [48] INMAN, D. J. and SINGH, R. C. Engineering Vibration, Prentice Hall, Englewood Cliffs, New Jersey, 321–323(1994) |