[1] SHECHTMAN, D., BLECH, I., GRATIAS, D., and CAHN, J. W. Metallic phase with long-range orientational order and no translational symmetry. Physical Review Letters, 53, 1951-1953(1984) [2] LEVINE, D. and STEINHARDT, P. J. Quasicrystals:a new class of ordered structures. Physical Review Letters, 53, 2477-2480(1984) [3] BAK, P. Symmetry, stability, and elastic properties of icosahedral incommensurate crystals. Physical Review B, 32(9), 5764-5772(1985) [4] LEVINE, D., LUBENSKY, T. C., OSTLUND, S., RAMASWAMY, S., STEINHARDT, P. J., and TONER, J. Elasticity and dislocation in pentagonal and icosahedral quasicrystal. Physical Review Letters, 54, 1520-1523(1985) [5] LOUZGUINE-LUZGIN, D. V. and INOUE, A. Formation and properties of quasicrystals. Annual Review of Materials Research, 38(1), 403-423(2008) [6] DUBOIS, J. M. New prospects from potential applications of quasicrystalline materials. Materials Science and Engineering:A, 294-296, 4-9(2000) [7] CHENG, L. I., ZHU, C., LIM, C. W., and SHUANG, L. I. Nonlinear in-plane thermal buckling of rotationally restrained functionally graded carbon nanotube reinforced composite shallow arches under uniform radial loading. Applied Mathematics and Mechanics (English Edition), 43(12), 1821-1840(2022) https://doi.org/10.1007/s10483-022-2917-7 [8] ZHANG, D. X., SHI, J. H., WU, B. D., ZHU, R., ZHOU, J. Q., GUO, Y. Y., AN, C. W., and WANG, J. Y. Using microfluidic technology to prepare octogen high-energy microspheres containing copper-aluminum composite particles with enhanced combustion performance. Materials and Design, 229, 111874(2023) [9] XU, D. K., LIU, L., XU, Y. B., and HAN, E. H. The strengthening effect of icosahedral phase on as-extruded Mg-Li alloys. Scripta Materialia, 57(3), 285-288(2007) [10] TANG, F., ANDERSON, I. E., GNAUPEL-HEROLD, T., and PRASK, H. Pure Al matrix composites produced by vacuum hot pressing:tensile properties and strengthening mechanisms. Materials Science and Engineering:A, 383(2), 362-373(2004) [11] KALOSHKIN, S. D., TCHERDYNTSEV, V. V., LAPTEV, A. I., STEPASHKIN, A. A., AFONINA, E. A., and POMADCHIK, A. L. Structure and mechanical properties of mechanically alloyed Al/Al-Cu-Fe composites. Journal of Materials Science, 39(16-17), 5399-5402(2004) [12] TEGHIL, R., BONIS, A. D., GALASSO, A., SANTAGATA, A., VILLANI, P., and SORDELET, D. J. Role and importance of nanoparticles in femtosecond pulsed laser ablation deposition of Al-Cu-Fe quasicrystal. Chemical Physics Letters, 438(1-3), 85-88(2007) [13] SARKAR, S., GUIBAL, E., QUIGNARD, F., and SENGUPTA, A. K. Polymer-supported metals and metal oxide nanoparticles:synthesis, characterization, and applications. Journal of Nanoparticle Research, 14(2), 1-24(2012) [14] PASHKOV, O. A. Influence of polymer coatings on the mechanical properties of steel samples in tensile and bending tests. Turkish Journal of Computer and Mathematics, 12(5), 542-548(2021) [15] MCCAULEY, T., BAUER, M., YOHO, C., LI, C., SOLOMON, V., and MORO, M. Separation of quasicrystalline nanoparticles from an amorphous matrix. Microscopy and Microanalysis, 18(S2), 1934-1935(2012) [16] KIDO, O., KURUMADA, M., KAMITSUJI, K., TANIGAKI, T., SATO, T., KIMURA, Y., SUZUKI, H., SAITO, Y., and KAITO, C. Synthesis of Al-Cr decagonal quasicrystal nanoparticles and their temperature of phase transformation to stable crystal phase. Physica E, 31(2), 169-173(2006) [17] UTKIN, Y. A., OREKHOV, A. A., and HEIN, T. Z. Tribological properties of polymer composite with impregnated quasicrystal nanoparticles. International Journal of Mechanical Sciences, 15, 189-195(2021) [18] INOUE, A. and TAKEUCHI, A. Recent progress in bulk glassy, nanoquasicrystalline and nanocrystalline alloys. Materials Science and Engineering:A, 375-377(1-2), 16-30(2004) [19] FOURNEE, V., SHARMA, H. R., SHIMODA, M., TSAI, A. P., UNAL, B., ROSS, A. R., LOGRASSO, T. A., and THIEL, P. A. Quantum size effects in metal thin films grown on quasicrystalline substrates. Physical Review Letters, 95(15), 155504(2005) [20] WANG, Z., ZHAO, W., QIN, C., CUI, Y., FAN, S., and JIA, J. Direct preparation of nanoquasicrystals via a water-cooled wedge-shaped copper mould. Journal of Nanomaterials, 2012, 708240(2012) [21] INOUE, A., KONG, F. L., ZHU, S. L., LIU, C. T., and AL-MARZOUKI, F. Development and applications of highly functional Al-based materials by use of metastable phases. Materials Research, 18(6), 1414-1425(2015) [22] EBRAHIMI, F. and BARATI, M. R. A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams. Arabian Journal for Science and Engineering, 41(5), 1679-1690(2016) [23] ERINGEN, A. C. Nonlocal Continuum Field Theories, Spring-Verlag, New York, 134-162(2002) [24] SLADEK, J., SLADEK, V., HRCEK, S., and PAN, E. The nonlocal and gradient theories for a large deformation of piezoelectric nanoplates. Composite Structures, 172, 119-129(2017) [25] LIM, C. W., ZHANG, G., and REDDY, J. N. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. Journal of the Mechanics and Physics of Solids, 78, 298-313(2015) [26] GUO, J. H., CHEN, J. Y., and PAN, E. Static deformation of anisotropic layered magnetoelectroelastic plates based on modified couple-stress theory. Composites Part B, 107, 84-96(2016) [27] ARASH, B. and WANG, Q. A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Computational Materials Science, 51(1), 303-313(2014) [28] LI, Y., YANG, L. Z., ZHANG, L. L., and GAO, Y. Three-dimensional exact solution of layered two-dimensional quasicrystal simply supported nanoplates with size-dependent effects. Applied Mathematical Modelling, 87, 42-54(2020) [29] ZHANG, L., GUO, J., and XING, Y. Bending analysis of functionally graded one-dimensional hexagonal piezoelectric quasicrystal multilayered simply supported nanoplates based on nonlocal strain gradient theory. Acta Mechanica Solida Sinica, 34(2), 237-251(2021) [30] TIWARI, K., BIWAS, K., PALLIWAL, M., MAJUMDAR, B., and FECHT, H. J. Melting behaviour of tri-phasic Bi44In32Sn23 alloy nanoparticle embedded in icosahedral quasicrystalline matrix. Journal of Alloys and Compounds, 834(5), 155160(2020) [31] LI, X. Y., WANG, T., ZHENG, R. F., and KANG, G. Z. Fundamental thermo-electro-elastic solutions for 1D hexagonal QC. ZAMM-Journal of Applied Mathematics and Mechanics, 95, 457-468(2015) [32] YU, Y. J., TIAN, X. G., and XIONG, Q. L. Size-dependent thermoelasticity based on nonlocal heat conduction and nonlocal elasticity. European Journal of Mechanics A/Solids, 60, 238-253(2016) [33] LI, X. Y. Fundamental solutions of penny-shaped and half-infinite plane cracks embedded in an infinite space of one-dimensional hexagonal quasicrystal under thermal loading. Proceedings of the Royal Society of London Series A, 469, 0023(2013) [34] ALTENBACH, H., EREMEYEV, V. A., and MOROZOV, N. F. On the influence of residual surface stresses on the properties of structures at the nanoscale. Surface Effects in Solid Mechanics, Springer, New York, 64-72(2013) [35] MALEKZADEH, P. and SHOJAEE, M. Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams. Composites Part B, 52, 84-92(2013) [36] HUANG, Y. Z., LI, Y., ZHANG, L. L., ZHANG, H., and GAO, Y. Dynamic analysis of a multilayered piezoelectric two-dimensional quasicrystal cylindrical shell filled with compressible fluid using the state-space approach. Acta Mechanica, 231(6), 2351-2368(2020) [37] ROOSTAI, H. and HAGHPANAHI, M. Transverse vibration of a hanging nonuniform nanoscale tube based on nonlocal elasticity theory with surface effects. Acta Mechanica Solida Sinica, 27(2), 202-209(2014) [38] HOSSEINI-HASHEMI, S., FAKHER, M., and NAZEMNEZHAD, R. Surface effects on free vibration analysis of nanobeams using nonlocal elasticity:a comparison between Euler-Bernoulli and Timoshenko. Journal of Solid Mechanics, 5(3), 290-304(2013) [39] CLAY, M. Galvanic Synthesis of Novel Porous Metal Nanostructures Using Aluminum Nanoparticle Templates and Their Application as Electrochemical Biosensors, University of Massachusetts Lowell, 69-83(2012) [40] WAKSMANSKI, N. and PAN, E. Nonlocal analytical solutions for multilayered one-dimensional quasicrystal nanoplates. Journal of Vibration and Acoustics, 139(2), 1-16(2017) [41] HUANG, Y. Z., LI, Y., ZHANG, L. L., ZHANG, H., and GAO, Y. Three-dimensional static analysis of multilayered one-dimensional orthorhombic quasicrystal spherical shells with the piezoelectric effect. Physics Letters A, 383(29), 125902(2019) [42] HUANG, M. J., FANG, X. Q., LIU, J. X., FENG, W. J., and ZHAO, Y. M. Size-dependent effective properties of anisotropic piezoelectric composites with piezoelectric nano-particles. Smart Materials and Structures, 24(1), 15005-15013(2015) [43] GOODIER, J. N. Concentration of stress around spherical and cylindrical inclusion and flaws. Journal of Applied Mechanics, 55, 39-44(1933) [44] CHEN, W. Q., CAI, J. B., and YE, G. R. Exact solutions of cross-ply laminates with bonding imperfections. AIAA Journal, 41(11), 2244-2250(2003) [45] GURTIN, M. E. and MURDOCH, A. I. A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57, 291-323(1975) [46] XIAO, J. H., XU, Y. L., and ZHANG, F. C. Size-dependent effective electroelastic moduli of piezoelectric nanocomposites with interface effect. Acta Mechanica, 222, 59-67(2011) [47] FANG, X. Q., HUANG, M. J., LIU, J. X., and NIE, G. Q. Electromechanical coupling properties of piezoelectric nanocomposites with coated elliptical nano-fibers under antiplane shear. Journal of Applied Physics, 115, 064306(2014) [48] GU, G. Q., WEI, E. B., POON, Y. M., and SHIN, F. G. Effective properties of spherically anisotropic piezoelectric composites. Physical Review B, 76, 064203(2007) [49] HUANG, Y. Z., CHEN, J., ZHAO, M., and FENG, M. L. Responses of multilayered twodimensional decagonal quasicrystal circular nanoplates with initial stresses and nanoscale interactions. European Journal of Mechanics A/Solids, 87, 104216(2021) [50] HUANG, Y. Z., LI, Y., ZHANG, L. L., ZHANG, H., and GAO, Y. Three-dimensional static analysis of multilayered one-dimensional orthorhombic quasicrystal spherical shells with the piezoelectric effect. Physics Letters A, 383(29), 125902(2019) [51] ZHU, M., YANG, G. C., CHENG, S. L., YAO, L. J., and ZHOU, Y. H. Phase transition and mechanical properties of Al-based composites reinforced by Al72Ni12Co16 decagonal quasicrystalline particles (in Chinese). Rare Metal Materials and Engineering, 39(009), 1604-1608(2010) [52] CHENG, S. L., YANG, G. C., ZHU, M., WANG, J. C., and ZHOU, Y. H. Mechanical properties and fracture mechanisms of aluminum matrix composites reinforced by Al9(Co, Ni)2 intermetallics. Transactions of Nonferrous Metals Society of China, 20(4), 572-576(2010) [53] HOU, Y., ZHANG, Z., ZHANG, J., LIU, Z., and SONG, Z. Effect of BaTiO3 nano-particles on breakdown performance of propylene carbonate. Review of Entific Instruments, 86(5), 241-248(2015) [54] CHENG, L., YAO, L., CHEN, W., and SHUANG, L. Comments on nonlocal effects in nanocantilever beams. International Journal of Engineering Science, 87, 47-57(2015) [55] CHENG, L., SHUANG, L., YAO, L., and ZHU, Z. Nonlocal theoretical approaches and atomistic simulations for longitudinal free vibration of nanorods/nanotubes and verification of different nonlocal models. Applied Mathematical Modelling, 39(15), 4570-4585(2015) [56] LI, Z., GUO, J., and XING, Y. Bending deformation of multilayered one-dimensional hexagonal piezoelectric quasicrystal nanoplates with nonlocal effect. International Journal of Solids and Structures, 132-133, 278-302(2018) [57] LI, C., LAI, S. K., and YANG, X. On the nano-structural dependence of nonlocal dynamics and its relationship to the upper limit of nonlocal scale parameter. Applied Mathematical Modelling, 69, 127-141(2019) [58] RASOULIGANDOMANI, M. Calibration of small scale parameter in Eringen's nonlocal shell theory for multi-walled carbon nanocone by molecular mechanics approach. The 5th International Conference on Nanostructures (ICNS5), Kish Island (2014) [59] HUANG, Y. and GAO, L. Nonlocal effects on surface enhanced raman scattering from bimetallic coated nanoparticles. Progress in Electromagnetics Research, 133, 591-605(2013) [60] SINGH, A. and TSAI, A. P. The nature of lead-quasicrystal interfaces and its effect on the melting behaviour of lead nanoparticles embedded in quasicrystalline matrices. Materials Science and Engineering A, 294, 160-163(2000) [61] WANG, B. H., YANG, G. C., ZHU, M., and CHENG, S. L. Microstructure and mechanical properties of Al-11%Mg-matrix composites reinforced by Al72Ni12Co16 decagonal quasicrystal particles (in Chinese). Zhuzao/Foundry, 57(2), 140-143(2008) [62] IWASAKI, Y., KITAHARA, K., and KIMURA, K. Band engineering in Al-TM (TM=Rh, Ir) quasicrystalline approximants via alloying and enhancement of thermoelectric properties. Journal of Alloys and Compounds, 851(1), 156904(2021) [63] TAKAGIWA, Y., KAMIMURA, T., HOSOI, S., OKADA, J. T., and KIMURA, K. Thermoelectric properties of Al-Pd-Re quasicrystal sintered by spark plasma sintering (SPS):effect of improvement of microstructure. International Journal for Structural Physical and Chemical Aspects of Crystalline Materials, 224(1-2), 79-83(2009) |