[1] CHEN, S. and DOOLEN, G. D. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics, 30(1), 329-364(1998) [2] OBRECHT, C., KUZNIK, F., TOURANCHEAU, B., and ROUX, J. J. Multi-GPU implementation of the lattice Boltzmann method. Computers & Mathematics with Applications, 65(2), 252-261(2013) [3] KRÜGER, T., KUSUMAATMAJA, H., KUZMIN, A., SHARDT, O., SILVA, G., and VIGGEN, E. M. The Lattice Boltzmann Method, Springer, Cham, 4-15(2017) [4] EGGELS, J. G. Direct and large-eddy simulation of turbulent fluid flow using the lattice-Boltzmann scheme. International Journal of Heat and Fluid Flow, 17(3), 307-323(1996) [5] JAHANSHALOO, L., POURYAZDANPANAH, E., and CHE SIDIK, N. A. A review on the application of the lattice Boltzmann method for turbulent flow simulation. Numerical Heat Transfer, Part A: Applications, 64(11), 938-953(2013) [6] AIDUN, C. K. and CLAUSEN, J. R. Lattice-Boltzmann method for complex flows. Annual Review of Fluid Mechanics, 42, 439-472(2010) [7] LIU, H., KANG, Q., LEONARDI, C. R., SCHMIESCHEK, S., NARVÁEZ, A., JONES, B. D., WILLIAMS, J. R., VALOCCHI, A. J., and HARTING, J. Multiphase lattice Boltzmann simulations for porous media applications. Computational Geosciences, 20(4), 777-805(2016) [8] YANG, F. C. and CHEN, X. P. Numerical simulation of two-dimensional viscous flows using combined finite element-immersed boundary method. Journal of Hydrodynamics, 27(5), 658-667(2015) [9] LI, Q. X., PAN, M., and DONG, Y. H. Turbulence modulation and heat transfer enhancement in channels roughened by cube-covered surface. Computers & Fluids, 165, 33-42(2018) [10] LI, Q. X., PAN, M., ZHOU, Q., and DONG, Y. H. Turbulent drag reduction by spanwise oscillations of a channel wall with porous layer. Computers & Fluids, 180, 1-10(2019) [11] HUANG, R. and WU, H. Multiblock approach for the passive scalar thermal lattice Boltzmann method. Physical Review E, 89(4), 043303(2014) [12] KARANI, H. and HUBER, C. Lattice Boltzmann formulation for conjugate heat transfer in heterogeneous media. Physical Review E, 91(2), 023304(2015) [13] PAN, M., LI, Q., TANG, S., and DONG, Y. H. Investigation of turbulence and skin friction modification in particle-laden channel flow using lattice Boltzmann method. Applied Mathematics and Mechanics (English Edition), 39(4), 477-488(2018) https://doi.org/10.1007/s10483-018-2316-8 [14] FILIPPOVA, O. and HÄNEL, D. Grid refinement for lattice-BGK models. Journal of Computational Physics, 147(1), 219-228(1998) [15] YU, D., MEI, R., and SHYY, W. A multi-block lattice Boltzmann method for viscous fluid flows. International Journal for Numerical Methods in Fluids, 39(2), 99-120(2002) [16] DUPUIS, A. and CHOPARD, B. Theory and applications of an alternative lattice Boltzmann grid refinement algorithm. Physical Review E, 67(6), 066707(2003) [17] BHATNAGAR, P. L., GROSS, E. P., and KROOK, M. A model for collision processes in gases, I, small amplitude processes in charged and neutral one-component systems. Physical Review, 94(3), 511(1954) [18] KUWATA, Y. and SUGA, K. Imbalance-correction grid-refinement method for lattice Boltzmann flow simulations. Journal of Computational Physics, 311, 348-362(2016) [19] WU, C. M., ZHOU, Y. S., and LIN, C. A. Direct numerical simulations of turbulent channel flows with mesh-refinement lattice Boltzmann methods on GPU cluster. Computers & Fluids, 210, 104647(2020) [20] D'HUMIÈRES, D. Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 360(1792), 437-451(2002) [21] TANG, Z., LIU, N. S., and DONG, Y. H. Lattice Boltzmann simulations of turbulent shear flow between parallel porous walls. Applied Mathematics and Mechanics (English Edition), 35(12), 1479-1494(2014) https://doi.org/10.1007/s10483-014-1885-6 [22] LIU, Z., LI, S., RUAN, J., ZHANG, W. B., ZHOU, L. P., HUANG, D. M., and XU, J. X. A new multi-level grid multiple-relaxation-time lattice Boltzmann method with spatial interpolation. Mathematics, 11(5), 1089(2023) [23] LAGRAVA, D., MALASPINAS, O., LATT, J., and CHOPARD, B. Advances in multi-domain lattice Boltzmann grid refinement. Journal of Computational Physics, 231(14), 4808-4822(2012) [24] LALLEMAND, P. and LUO, L. S. Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Physical Review E, 61(6), 6546(2000) [25] GUO, Z., ZHENG, C., and SHI, B. Discrete lattice effects on the forcing term in the lattice Boltzmann method. Physical Review E, 65(4), 046308(2002) [26] KIM, J., MOIN, P., and MOSER, R. Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics, 177, 133-166(1987) [27] KUWATA, Y. and SUGA, K. Direct numerical simulation of turbulence over anisotropic porous media. Journal of Fluid Mechanics, 831, 41-71(2017) [28] BREUGEM, W., BOERSMA, B., and UITTENBOGAARD, R. The influence of wall permeability on turbulent channel flow. Journal of Fluid Mechanics, 562, 35-72(2006) [29] CHIKATAMARLA, S. S., FROUZAKIS, C. E., KARLIN, I. V., TOMBOULIDES, A. G., and BOULOUCHOS, K. B. Lattice Boltzmann method for direct numerical simulation of turbulent flows. Journal of Fluid Mechanics, 656, 298-308(2010) [30] BESPALKO, D., POLLARD, A., and UDDIN, M. Analysis of the pressure fluctuations from an LBM simulation of turbulent channel flow. Computers & Fluids, 54, 143-146(2012) [31] SUGA, K., OKAZAKI, Y., MATSUO, T., TANEO, A., and KUWATA, T. Measurement of turbulent square duct flows over anisotropic porous media. 11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11), Begel House Inc., Southampton (2019) |