Applied Mathematics and Mechanics (English Edition) ›› 2005, Vol. 26 ›› Issue (11): 1484-1490 .
• 论文 • 上一篇 下一篇
孙建强, 马中骐, 田益民, 秦孟兆
收稿日期:
修回日期:
出版日期:
发布日期:
通讯作者:
SUN Jian-qiang, MA Zhong-qi, TIAN Yi-min, QIN Meng-zhao
Received:
Revised:
Online:
Published:
Contact:
Abstract: When the Poisson matrix of Poisson system is non-constant, classical symplectic methods, such as symplectic Runge-Kutta method, generating function method, cannot preserve the Poisson structure. The non-constant Poisson structure was transformed into the symplectic structure by the nonlinear transform.Arbitrary order symplectic method was applied to the transformed Poisson system. The Euler equation of the free rigid body problem was transformed into the symplectic structure and computed by the midpoint scheme. Numerical results show the effectiveness of the nonlinear transform.
Key words: Poisson system, nonlinear transformation, symplectic method, rigid body problem
中图分类号:
O241.8
O152.5
34A45
22E45
孙建强;马中骐;田益民;秦孟兆. SYMPLECTIC STRUCTURE OF POISSON SYSTEM[J]. Applied Mathematics and Mechanics (English Edition), 2005, 26(11): 1484-1490 .
SUN Jian-qiang;MA Zhong-qi;TIAN Yi-min;QIN Meng-zhao. SYMPLECTIC STRUCTURE OF POISSON SYSTEM[J]. Applied Mathematics and Mechanics (English Edition), 2005, 26(11): 1484-1490 .
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: https://www.amm.shu.edu.cn/CN/
https://www.amm.shu.edu.cn/CN/Y2005/V26/I11/1484