Applied Mathematics and Mechanics (English Edition) ›› 2015, Vol. 36 ›› Issue (12): 1593-1610.doi: https://doi.org/10.1007/s10483-015-2003-6
S. DAS1, S. CHAKRABORTY1, R. N. JANA2, O. D. MAKINDE3
收稿日期:
2014-10-15
修回日期:
2015-06-27
出版日期:
2015-12-01
发布日期:
2015-12-01
通讯作者:
S. DAS
E-mail:tutusanasd@yahoo.co.in
S. DAS1, S. CHAKRABORTY1, R. N. JANA2, O. D. MAKINDE3
Received:
2014-10-15
Revised:
2015-06-27
Online:
2015-12-01
Published:
2015-12-01
Contact:
S. DAS
E-mail:tutusanasd@yahoo.co.in
摘要:
The unsteady laminar magnetohydrodynamics(MHD) boundary layer flow and heat transfer of nanofluids over an accelerating convectively heated stretching sheet are numerically studied in the presence of a transverse magnetic field with heat source/sink. The unsteady governing equations are solved by a shooting method with the Runge-KuttaFehlberg scheme. Three different types of water based nanofluids, containing copper, aluminium oxide, and titanium dioxide, are taken into consideration. The effects of the pertinent parameters on the fluid velocity, the temperature, the entropy generation number, the Bejan number, the shear stress, and the heat transfer rate at the sheet surface are graphically and quantitatively discussed in detail. A comparison of the entropy generation due to the heat transfer and the fluid friction is made with the help of the Bejan number. It is observed that the presence of the metallic nanoparticles creates more entropy in the nanofluid flow than in the regular fluid flow.
中图分类号:
S. DAS, S. CHAKRABORTY, R. N. JANA, O. D. MAKINDE. Entropy analysis of unsteady magneto-nanofluid flow past accelerating stretching sheet with convective boundary condition[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(12): 1593-1610.
S. DAS, S. CHAKRABORTY, R. N. JANA, O. D. MAKINDE. Entropy analysis of unsteady magneto-nanofluid flow past accelerating stretching sheet with convective boundary condition[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(12): 1593-1610.
[1] Choi, S. U. S. Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows. ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineering, San Francisco(1995) |
[1] | N. HUMNEKAR, D. SRINIVASACHARYA. Influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 563-580. |
[2] | C. G. PAVITHRA, B. J. GIREESHA, M. L. KEERTHI. Semi-analytical investigation of heat transfer in a porous convective radiative moving longitudinal fin exposed to magnetic field in the presence of a shape-dependent trihybrid nanofluid[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(1): 197-216. |
[3] | L. ANITHA, B. J. GIREESHA. Convective flow of Jeffrey nanofluid along an upright microchannel with Hall current and Buongiorno model: an irreversibility analysis[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1613-1628. |
[4] | B. K. SHARMA, R. GANDHI, T. ABBAS, M. M. BHATTI. Magnetohydrodynamics hemodynamics hybrid nanofluid flow through inclined stenotic artery[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(3): 459-476. |
[5] | S. P. V. ANANTH, B. N. HANUMAGOWDA, S. V. K. VARMA, C. S. K. RAJU, I. KHAN, P. RANA. Thermo-diffusion impact on immiscible flow characteristics of convectively heated vertical two-layered Baffle saturated porous channels in a suspension of nanoparticles: an analytical study[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(2): 307-324. |
[6] | Shuguang LI, M. I. KHAN, F. ALI, S. S. ABDULLAEV, S. SAADAOUI, HABIBULLAH. Mathematical modeling of mixed convective MHD Falkner-Skan squeezed Sutterby multiphase flow with non-Fourier heat flux theory and porosity[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(11): 2005-2018. |
[7] | Qingkai ZHAO, Longbin TAO, Hang XU. Analysis of periodic pulsating nanofluid flow and heat transfer through a parallel-plate channel in the presence of magnetic field[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(11): 1957-1972. |
[8] | A. M. ALSHARIF, A. I. ABDELLATEEF, Y. A. ELMABOUD, S. I. ABDELSALAM. Performance enhancement of a DC-operated micropump with electroosmosis in a hybrid nanofluid: fractional Cattaneo heat flux problem[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(6): 931-944. |
[9] | N. A. ZAINAL, R. NAZAR, K. NAGANTHRAN, I. POP. Slip effects on unsteady mixed convection of hybrid nanofluid flow near the stagnation point[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(4): 547-556. |
[10] | S. HUSSAIN, T. TAYEBI, T. ARMAGHANI, A. M. RASHAD, H. A. NABWEY. Conjugate natural convection of non-Newtonian hybrid nanofluid in wavy-shaped enclosure[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(3): 447-466. |
[11] | B. J. GIREESHA, L. ANITHA. Repercussion of Hall effect and nonlinear radiation on Couette-Poiseuille flow of Casson-Williamson fluid through upright microchannel[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(12): 1951-1964. |
[12] | Weipeng HU, Zhen WANG, Yulu HUAI, Xiqiao FENG, Wenqi SONG, Zichen DENG. Effects of temperature change on the rheological property of modified multiwall carbon nanotubes[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(10): 1503-1514. |
[13] | I. WAINI, A. ISHAK, I. POP. Magnetohydrodynamic flow past a shrinking vertical sheet in a dusty hybrid nanofluid with thermal radiation[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(1): 127-140. |
[14] | Hang XU. Mixed convective flow of a hybrid nanofluid between two parallel inclined plates under wall-slip condition[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(1): 113-126. |
[15] | J. K. MADHUKESH, G. K. RAMESH, B. C. PRASANNAKUMARA, S. A. SHEHZAD, F. M. ABBASI. Bio-Marangoni convection flow of Casson nanoliquid through a porous medium in the presence of chemically reactive activation energy[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(8): 1191-1204. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||