[1] McKibbin, R. Convection and heat transfer in layered and anisotropic porous media. ASME 2008 Heat Transfer Summer, American Society of Mechanical Engineers, New York, 327-336(1992)
[2] Nield, D. A. and Bejan, A. Convection in Porous Media, Springer, New York (2013)
[3] Storesletten, L. Effects of anisotropy on convective flow through porous media. Transport Phenomena in Porous Media, Elsevier, the Netherlands, 261-283(1998)
[4] Straughan, B. The Energy Method, Stability and Nonlinear Convection, Springer, New York (2004)
[5] Storesletten, L. Effects of anisotropy on convection in horizontal and inclined porous layers. Emerging Technologies and Techniques in Porous Media, Springer, Dordrecht, 285-306(2004)
[6] Castinel, G. and Combarnous, M. Natural convection in an anisotropic porous layer. International Journal of Chemical Engineering, 17, 605-613(1977)
[7] Epherre, J. F. Criterion for the appearance of natural convection in an anisotropic porous layer. International Journal of Chemical Engineering, 17, 615-616(1977)
[8] Capone, F., Gentile, M., and Hill, A. A. Anisotropy and symmetry in porous media convection. Acta Mechanica, 208, 205-214(2009)
[9] Kvernvold, O. and Tyvand, P. A. Nonlinear thermal convection in anisotropic porous media. Journal of Fluid Mechanics, 90, 609-624(1979)
[10] Govender, S. On the effect of anisotropy on the stability of convection in rotating porous media. Transport in Porous Media, 64, 413-422(2006)
[11] Tyvand, P. A. and Storesletten, L. Onset of convection in an anisotropic porous layer with vertical principal axes. Transport in Porous Media, 108, 581-593(2015)
[12] Malashetty, M. S. and Swamy, M. The onset of convection in a viscoelastic liquid saturated anisotropic porous layer. Transport in Porous Media, 67, 203-218(2007)
[13] Alishaev, M. G. and Mirzadjanzade, A. K. For the calculation of delay phenomenon in filtration theory. Izvestiya Vuzov Neft i Gaz, 6, 71-77(1975)
[14] Rudraiah, N. and Kaloni, P. N. Flow of non-Newtonian fluids. Encyclopedia of Fluid Mechanics, 9, 1-69(1990)
[15] Rudraiah, N., Kaloni, P. N., and Radhadevi, P. V. Oscillatory convection in a viscoelastic fluid through a porous layer heated from below. Rheologica Acta, 28, 48-53(1989)
[16] Shenoy, A. V. Non-Newtonian fluid heat transfer in porous media. Advances in Heat Transfer, 24, 101-190(1994)
[17] Kim, M. C., Lee, S. B., Kim, S., and Chung, B. J. Thermal instability of viscoelastic fluids in porous media. International Journal of Heat and Mass Transfer, 46, 5065-5072(2003)
[18] Malashetty, M. S., Shivakumara, I. S., Sridharkulkarni, and Swamy, M. Convective instability of Oldroyd-B fluid saturated porous layer heated from below using a thermal non-equilibrium model. Transport in Porous Media, 64, 123-39(2006)
[19] Shivakumara, I. S., Malashetty, M. S., and Chavaraddi, K. B. Onset of convection in a viscoelastic fluid saturated sparsely packed porous layer using a thermal non-equilibrium model. Canadian Journal of Physics, 84, 973-90(2006)
[20] Sheu, L. J., Tam, L. M., Chen, J. H., Chen, H. K., Lin, K. T., and Kang, Y. Chaotic convection of viscoelastic fluids in porous media. Chaos, Solitons and Fractals, 37, 113-124(2008)
[21] Wang, S. and Tan, W. Stability analysis of soret-driven double-diffusive convection of Maxwell fluid in a porous medium. International Journal of Heat and Fluid Flow, 32, 88-94(2011)
[22] Raghunatha, K. R., Shivakumara, I. S., and Shankar, B. M. Weakly nonlinear stability analysis of triple diffusive convection in a Maxwell fluid saturated porous layer. Applied Mathematics and Mechanics (English Edition), 39(2), 153-168(2017) https://doi.org/10.1007/s10483-018-2298-6
[23] Cao, L. M., Si, X. H., and Zheng, L. C. Convection of Maxwell fluid over stretching porous surface with heat source/sink in presence of nanoparticles:Lie group analysis. Applied Mathematics and Mechanics (English Edition), 37(4), 433-442(2016) https://doi.org/10.1007/s10483-016-2052-9
[24] Mahanthesh, B., Gireesha, B. J., Shehzad, S. A., Abbasi, F. M., and Gorla, R. S. R. Nonlinear three-dimensional stretched flow of an Oldroyd-B fluid with convective condition, thermal radiation, and mixed convection. Applied Mathematics and Mechanics (English Edition), 38(7), 969-980(2017) https://doi.org/10.1007/s10483-017-2219-6
[25] Makinde, O. D. and Eegunjobi, A. S. Entropy analysis of thermally radiating magnetohydrodynamics slip flow of Casson fluid in a microchannel filled with saturated porous media. Journal of Porous Media, 19, 799-810(2016)
[26] Makinde, O. D. and Rundora, L. Unsteady mixed convection flow of a reactive Casson fluid in a permeable wall channel filled with a porous medium. Defect and Diffusion Forum, 377, 166-179(2017)
[27] Malkus, W. V. R. and Veronis, G. Finite amplitude cellular convection. Journal of Fluid Mechanics, 4, 225-260(1985)
[28] Venezian, G. Effect of modulation on the onset of thermal convection. Journal of Fluid Mechanics, 35, 243-254(1969)
[29] Gupta, V. P. and Joseph, D. D. Bounds for heat transport in a porous layer. Journal of Fluid Mechanics, 57, 491-514(1973) |