[1] RYU, S., LEE, H., and KIM, S. D. First-order system least-squares methods for an optimal control problem by the Stokes flow. SIAM Journal on Numerical Analysis, 47, 1524-1545(2009) [2] KIM, S. D. Uzawa algorithms for coupled Stokes equations from the optimal control problem. Calcolo, 46, 37-47(2009) [3] PIAO, X., KIM, P., and KIM, S. D. Block LU factorization for the coupled Stokes equations by spectral element discretization. Kyungpook Mathematical Journal, 52, 359-373(2012) [4] RYU, S., KIM, S. D., and LEE, H. First-order system least-squares methods for a flux control problem by the Stokes flow. Communications in Computational Physics, 7, 738-758(2010) [5] FENG, M., QI, R., ZHU, R., and JU, B. Stabilized Crouzeix-Raviart element for the coupled Stokes and Darcy problem. Applied Mathematics and Mechanics (English Edition), 31, 393-404(2010) https://doi.org/10.1007/s10483-010-0312-z [6] LUO, Z., OU, Q., and XIE, Z. Reduced finite difference scheme and error estimates based on POD method for non-stationary Stokes equation. Applied Mathematics and Mechanics (English Edition), 32, 847-858(2011) https://doi.org/10.1007/s10483-011-1464-9 [7] SHI, D. and PEI, L. Superconvergence of nonconforming finite element penalty scheme for Stokes problem using L2 projection method. Applied Mathematics and Mechanics (English Edition), 34, 861-874(2013) https://doi.org/10.1007/s10483-013-1713-x [8] WANG, G. and WANG, L. Uzawa type algorithm based on dual mixed variational formulation. Applied Mathematics and Mechanics (English Edition), 23, 765-772(2002) https://doi.org/10.1007/BF02456972 [9] ARROW, K., HURWICZ, L., and UZAWA, H. Studies in Nonlinear Programming, Standford University Press, Standford (1958) [10] ZSAKI, A., RIXEN, D., and PARASCHIVOIU, M. A substructure-based iterative inner solver coupled with Uzawa's algorithm for the Stokes problem. International Journal for Numerical Methods in Fluids, 43, 215-230(2003) [11] NOCHETTO, R. H. and PYO, J. H. Optimal relaxation parameter for the Uzawa method. Numerische Mathematik, 98, 695-702(2004) [12] LI, X. Z. and HUANG, P. Z. A sensitivity study of relaxation parameter in Uzawa algorithm for the steady natural convection model. International Journal of Numerical Methods for Heat and Fluid Flow, 30, 818-833(2020) [13] ANJAM, I., NOKKA, M., and REPIN, S. I. On a posteriori error bounds for approximations of the generalized Stokes problem generated by the Uzawa algorithm. Russian Journal of Numerical Analysis and Mathematical Modelling, 27, 321-338(2012) [14] KOBELKOV, G. M. and OLSHANSKII, M. A. Effective preconditioning of Uzawa type schemes for a generalized Stokes problem. Numerische Mathematik, 86, 443-470(2000) [15] HUANG, P. Z. Convergence of the Uzawa method for the Stokes equations with damping. Complex Variables and Elliptic Equations, 62, 876-886(2017) [16] NOCHETTO, R. H. and PYO, J. H. The gauge-Uzawa finite element method, part I:the NavierStokes equations. SIAM Journal on Numerical Analysis, 43, 1043-1068(2005) [17] NOCHETTO, R. H. and PYO, J. H. Error estimates for semi-discrete gauge methods for the Navier-Stokes equations. Mathematics of Computation, 74, 521-542(2005) [18] ROSCH, A. and VEXLER, B. Optimal control of the Stokes equatiö ns:a priori error analysis for finite element discretization with postprocessing. SIAM Journal on Numerical Analysis, 44, 1903-1920(2006) |