[1] FORCHHEIMER, P. Wasserbewegung durch Boden. Zeitschrift des Vereines Deutscher Ingeneieure, 45, 1782-1788(1901) [2] CONSTANTIN, P. Inviscid limit for damped and driven incompressible Navier-Stokes equations in R2. Communications in Mathematical Physics, 275, 529-551(2007) [3] GEORGIEV, V. and TODOROVA, G. Existence of a solution of the wave equation with nonlinear damping and source terms. Journal of Differential Equations, 109, 295-308(1994) [4] RAMMAHA, M. A. and STREI, T. A. Global existence and nonexistence for nonlinear wave equations with damping and source terms. Transactions of the American Mathematical Society, 354(9), 3621-3637(2002) [5] ZHAO, C. D. and YOU, Y. C. Approximation of the incompressible convective BrinkmanForchheimer equations. Journal of Evolution Equations, 12(4), 767-788(2012) [6] GIRAULT, V. and WHEELER, M. F. Numerical discretization of a Darcy-Forchheimer model. Numerische Mathematik, 110, 161-198(2008) [7] PAN, H. and RUI, H. X. Mixed element method for two-dimensional Darcy-Forchheimer model. Journal of Scientific Computing, 52, 563-587(2012) [8] ZHOU, Y. Global existence and nonexistence for a nonlinear wave equation with damping and source terms. Mathematische Nachrichten, 278(11), 1341-1358(2005) [9] HSIAO, L. Quasilinear Hyperbolic Systems and Dissipative Mechanisms, World Scientific, Singapore (1997) [10] ZHAO, C. S. and LI, K. T. The global attractor of Navier-Stokes equations with linear dampness on the whole two-dimensional space and estimates of its dimensions. Acta Mathematicae Applicatae Sinica, 23(1), 90-98(2000) [11] JIANG, J. P. and HOU, Y. R. The global attractor of g-Navier-Stokes equations with linear dampness on R2. Applied Mathematics and Computation, 215, 1068-1076(2009) [12] VAFAI, K. and TIEN, C. L. Boundary and inertia effects on flow and heat transfer in porous media. International Journal of Heat and Mass Transfer, 24(2), 195-203(1981) [13] JOSEPH, D. D., NIELD, D. A., and PAPANICOLAOU, G. Nonlinear equation governing flow in a saturated porous medium. Water Resources Research, 18(4), 1049-1052(1982) [14] NIELD, D. A. The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface. International Journal of Heat and Mass Transfer, 12(3), 269-272(1991) [15] NIELD, D. and BEJAN, A. Convection in Porous Media, Springer, Berlin (2006) [16] STRAUGHAN, B. Stability and Wave Motion in Porous Media, Springer, New York (2008) [17] SHENOY, A. Non-Newtonian fluid heat transfer in porous media. Advances in Heat Transfer, 24, 101-190(1994) [18] UĞRULU, D. On the existence of a global attractor for the Brink man-Forchheimer equations. Nonlinear Analysis, 68, 1986-1992(2008) [19] OUYANG, Y. and YANG, L. A note on the existence of a global attractor for the BrinkmanForchheimer equations. Nonlinear Analysis, 70, 2054-2059(2009) [20] KALANTAROV, V. K. and ZELIK, S. Smooth attractor for the Brinkman-Forchheimer equations with fast growing nonlinearities. Communications on Pure and Applied Analysis, 11(5), 2037-2054(2012) [21] CELEBI, A. O., KALANTAROV, V. K., and UĞURLU, D. On continuous dependence on coefficients of the Brinkman-Forchheimer equations. Applied Mathematics Letters, 19, 801-807(2006) [22] LIU, Y. Convergence and continuous dependence for the Brinkman-Forchheimer equations. Mathematical and Computer Modelling, 49, 1401-1415(2009) [23] LIU, D. M. and LI, K. T. Finite element analysis of the Stokes equations with damping. Mathematica Numerica Sinica, 32(4), 433-448(2010) [24] SHI, D. Y. and YU, Z. Y. Superclose and superconvergence of finite element discretizations for the Stokes equations with damping. Applied Mathematics and Computation, 219, 7693-7698(2013) [25] BOLING, G. and LIRENG, W. Qualitative Methods for Nonlinear Boundary Value Problems, Sun Yat-set University Press, Guangzhou (1992) [26] ADAMS, R. A. Sobolev Spaces, Academic Press, New York (1975) [27] GIRAULT, V. and RAVIART, P. A. Finite Elment Approximation of the Navier-Stokes Equations, Springer-Verlag, New York (1979) [28] TEMAM, R. Navier-Stokes Equations Theory and Numerical Analysis, North-Holland Publishing Co., Amsterdam (1984) [29] CIARLET, P. G. The Finite Element Method for Elliptic Problems, North-Holland Publishing Co., Amsterdam/New York/Oxford (1978) [30] LIU, W. B. and YAN, N. N. Some a posteriori error estimators for p-Laplacian based on residual estimation or gradient recovery. Journal of Computational Physics, 16(4), 435-477(2001) [31] AMROUCHE, A. and GIRAULT, V. Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension. Czechoslovak Mathematical Journal, 4(1), 4109-4140(1994) [32] GHIA, U., GHIA, K. N., and SHIN, C. T. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 48, 387-411(1982) |