[1] XIAO, H. Thermo-coupled elastoplasticity models with asymptotic loss of the material strength. International Journal of Plasticity, 63, 211-228(2014) [2] WANG, Z. L., LI, H., YIN, Z. N., and XIAO, H. A new, direct approach toward modeling thermocoupled fatigue failure behavior of metals and alloys. Acta Mechanica Solida Sinica, 30, 1-9(2017) [3] WANG, Z. L. and XIAO, H. Direct modeling of multi-axial fatigue failure for metals. International Journal of Solids and Structures, 125, 216-231(2017) [4] VOCE, E. The relationship between stress and strain for homogeneous deformation. Journal of the Institute of Metals, 74, 537-562(1948) [5] SWIFT, H. W. Plastic instability under plane stress. Journal of the Mechanics and Physics of Solids, 1, 1-18(1952) [6] WHITEMAN, I. R. A mathematical model depicting the stress-strain diagram and the hysteresis loop. ASME Journal of Applied Mechanics, 81, 95-102(1959) [7] LUDWIGSON, D. C. Modified stress-strain relation for FCC metals and alloys. Metallurgical Transactions, 2, 2825-2828(1971) [8] HARTLEY, C. S. and SRINIVASAN, R. Constitutive equations for large plastic deformation of metals. Journal of Engineering Materials and Technology, 105, 162-169(1983) [9] JOHNSON, G. R. and COOK, W. H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Engineering Fracture Mechanics, 21, 541-548(1983) [10] BARAGER, D. L. The high temperature and high strain-rate behaviour of a plain carbon and an HSLA steel. Journal of Mechanical Working Technology, 14, 296-307(1987) [11] ZERILLI, F. J. and ARMSTRONG, R. W. Description of tantalum deformation behavior by dislocation mechanics based constitutive relations. Journal of Applied Physics, 68, 1580-1591(1990) [12] SUNG, J. H., KIM, J. H., and WAGONER, R. H. A plastic constitutive equation incorporating strain, strain-rate, and temperature. International Journal of Plasticity, 26, 1746-1771(2010) [13] CHABOCHE, J. L. A review of some plasticity and viscoplasticity constitutive theories. International Journal of Plasticity, 24, 1642-1693(2008) [14] BRUHNS, O. T. The Prandtl-Reuss equations revisited. Zeitschrift für Angewandte Mathematik und Mechanik, 94, 187-202(2014) [15] SHAW, J. A. and KYRIAKIDES, S. Initiation and propagation of localized deformation in elastoplastic strips under uniaxial tension. International Journal of Plasticity, 13, 837-871(1997) [16] KANG, G. Z. A visco-plastic constitutive model for ratcheting of cyclically stable materials and its finite element implementation. Mechanics of Materials, 36, 299-312(2004) [17] ZHAO, W. J., YANG, S. P., WEN, G. L., and REN, X. H. Fractional-order visco-plastic constitutive model for uniaxial ratcheting behaviors. Applied Mathematics and Mechanics (English Edition), 41(1), 49-62(2019) https://doi.org/10.1007/s10483-019-2413-8 [18] PAREDES, M. and WIERZBICKI, T. On mechanical response of Zircaloy-4 under a wider range of stress states:from uniaxial tension to uniaxial compression. International Journal of Solids and Structures, 206, 198-223(2020) [19] YU, C. Y., KAO, P. W., and CHANG, C. P. Transition of tensile deformation behaviors in ultrafine-grained aluminum. Acta Materialia, 53, 4019-4028(2005) [20] SEGAL, V. M., FERRASSE, S., and ALFORD, F. Tensile testing of ultra fine grained metals. Materials Science and Engineering:A, 422(3), 321-326(2006) [21] HUANG, C. X., WU, S. D., LI, S. X., and ZHANG, Z. F. Strain hardening behavior of ultrafinegrained Cu by analyzing the tensile stress-strain curve. Advanced Engineering Materials, 10, 434-439(2010) [22] LIN, P., HE, Z. B., YUAN, S. J., and SHEN, J. Tensile deformation behavior of Ti-22Al-25Nb alloy at elevated temperatures. Materials Science and Engineering:A, 556, 617-624(2012) [23] WANG, X. S., HU, W. L., HUANG, S. J., and DING, R. Experimental investigations on extruded 6063 aluminium alloy tubes under complex tension-compression stress states. International Journal of Solids and Structures, 168, 123-137(2019) [24] LEHMANN, T. Einige Bemerkungen zu einer allgemeinen Klasse von Stoffgesetzen für große elasto-plastische Formänderungen. Ingenieur-Archiv, 41(4), 297-310(1972) [25] DIENES, J. K. On the analysis of rotation and stress rate in deforming bodies. Acta Mechanica, 32, 217-232(1979) [26] NAGTEGAAL, J. C. and DE JONG, J. E. Some aspects of non-isotropic work-hardening in finite strain plasticity. Plasticity of Metals at Finite Strain, Theory, Computation and Experiment (eds., LEE, E. H. and MALLETT, R. L.), Stanford University Press, Stanford, 65-102(1982) [27] ATLURI, S. N. On constitutive relations at finite strain:hypo-elasticity and elasto-plasticity with isotropic or kinematic hardening. Computer Methods in Applied Mechanics and Engineering, 43, 137-171(1984) [28] REED, K. W. and ATLURI, S. N. Constitutive modeling and computational implementation for finite strain plasticity. International Journal of Plasticity, 1, 63-87(1985) [29] BRUHNS, O. T., XIAO, H., and MEYERS, A. Large simple shear and torsion problems in kinematic hardening elastoplasticity with logarithmic rate. International Journal of Solids and Structures, 38, 8701-8722(2001) [30] BRUHNS, O. T., XIAO, H., and MEYERS, A. Large-strain response of isotropic-hardening elastoplasticity with logarithmic rate:swift effect in torsion. Archive of Applied Mechanics, 71, 389-404(2001) [31] BAKHSHIANI, A., MOFID, M., KHOEI, A. R., and MCCABE, S. L. Finite strain simulation of thin-walled tube under torsion using endochronic theory of plasticity. Thin-Walled Structures, 41, 435-459(2003) [32] COLAK, O. U. Modeling of large simple shear using a viscoplastic overstress model and classical plasticity model with different objective stress rates. Acta Mechanica, 167, 171-187(2004) [33] XIAO, H., BRUHNS, O. T., and MEYERS, A. Objective stress rates, cyclic deformation paths, and residual stress accumulation. Zeitschrift für Angewandte Mathematik und Mechanik, 86, 843-855(2006) [34] TRAJKOVIĆ-MILENKOVIĆ, M. and BRUHNS, O. T. Logarithmic rate implementation in constitutive relations of finite elastoplasticity with kinematic hardening. Zeitschrift für Angewandte Mathematik und Mechanik, 98, 1237-1248(2018) [35] XIAO, H. Hencky strain and Hencky model:extending history and ongoing tradition. Multidiscipline Modeling in Materials and Structures, 1, 1-51(2005) [36] XIAO, H., BRUHNS, O. T., and MEYERS, A. Elastoplasticity beyond small deformations. Acta Mechanica, 182, 31-111(2006) [37] BRUHNS, O. T. Large deformation plasticity. Acta Mechanica Sinica, 36, 472-492(2020) [38] XIAO, H. Deformable micro-continua in which quantum mysteries reside. Applied Mathematics and Mechanics (English Edition), 41(12), 1805-1830(2019) https://doi.org/10.1007/s10483-019-2546-6 [39] XIAO, H., BRUHNS, O. T., and MEYERS, A. Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mechanica, 124, 89-105(1997) [40] XIAO, H., BRUHNS, O. T., and MEYERS, A. On objective corotational rates and their defining spin tensors. International Journal of Solids and Structures, 35, 4001-4014(1998) [41] XIAO, H., BRUHNS, O. T., and MEYERS, A. Strain rates and material spins. Journal of Elasticity, 52, 1-41(1998) [42] BRUHNS, O. T., XIAO, H., and MEYERS, A. Self-consistent Eulerian rate type elasto-plasticity models based upon the logarithmic stress rate. International Journal of Plasticity, 15, 479-520(1999) [43] BRUHNS, O. T., XIAO, H., and MEYERS, A. Some basic issues in traditional Eulerian formulations of finite elastoplasticity. International Journal of Plasticity, 19, 2007-2026(2003) [44] XIAO, H., BRUHNS, O. T., and MEYERS, A. Thermodynamic laws and consistent Eulerian formulation of finite elastoplasticity with thermal effects. Journal of the Mechanics and Physics of Solids, 55, 338-365(2007) [45] WANG, S. Y., ZHAN, L., WANG, Z. L., YIN, Z. N., and XIAO, H. A direct approach toward simulating cyclic and non-cyclic fatigue failure of metals. Acta Mechanica, 228, 4325-4330(2017) [46] WANG, Y. S., ZHAN, L., XI, H. F., and XIAO, H. Coupling effects of finite rotation and straininduced anisotropy on monotonic and cyclic failure of metals. Acta Mechanica, 229, 4963-4975(2018) [47] ZHAN, L., WANG, S. Y., XI, H. F., and XIAO, H. Direct simulation of thermo-coupled fatigue failure for metals. Zeitschrift für Angewandte Mathematik und Mechanik, 98, 856-869(2018) [48] ZHAN, L., WANG, S. Y., XI, H. F., and XIAO, H. Innovative elastoplastic J2-flow model incorporating cyclic and non-cyclic failure effects of metals as inherent constitutive features. Zeitschrift für Angewandte Mathematik und Mechanik, 99, e201900023(2019) [49] BRIDGMAN, P. W. Studies in Large Plastic Flow and Fracture, McGraw-Hill, New York (1952) [50] TARDIF, N. and KYRIAKIDES, S. Determination of anisotropy and material hardening for aluminum sheet metal. International Journal of Solids and Structures, 49, 3496-3506(2012) [51] KIM, J. H., SERPANTÉ, A., BARLAT, F., PIERRON, F., and LEE, M. G. Characterization of the post-necking strain hardening behavior using the virtual fields method. International Journal of Solids and Structures, 50, 3829-3842(2013) [52] GERBIG, D., BOWER, A., SAVIC, V., and HECTOR, L. G. Coupling digital image correlation and finite element analysis to determine constitutive parameters in necking tensile specimens. International Journal of Solids and Structures, 97-98, 496-509(2016) [53] DING, X. F., ZHAN, L., XI, H. F., and XIAO, H. A unified simulation for effects of gellan polymer concentrations on large strain elastic behaviors of gellan gels. Multidiscipline Modeling in Materials and Structures, 15, 859-870(2019) [54] WANG, S. Y., ZHAN, L., XI, H. F., and XIAO, H. New finite strain elastoplastic equations for accurately and explicitly simulating pseudoelastic-to-plastic transition effects of SMAs. Applied Mathematics and Mechanics (English Edition), 41(12), 1582-1596(2020) https://doi.org/10.1007/s10483-020-2659-7 [55] ZHAN, L., WANG, X. M., WANG, S. Y., XI, H. F., and XIAO, H. An explicit and accurate approach toward simulating plastic-to-pseudoelastic transitions of SMAs under multiple loading and unloading cycles. International Journal of Solids and Structures, 185-186, 104-115(2020) [56] WANG, S. Y., ZHAN, L., XI, H. F., and XIAO, H. A unified approach toward simulating constant and varying amplitude fatigue failure effects of metals with fast and efficient algorithms. Acta Mechanica Solida Sinica, 34, 53-64(2021) [57] WANG, S. Y., ZHAN, L., BRUHNS, O. T., and XIAO, H. Metal failure effects predicted accurately with a unified and explicit criterion. Zeitschrift für Angewandte Mathematik und Mechanik, 101, e202100140(2021) [58] ZHOU, Q., QIAN, L. H., MENG, J. Y., ZHAO, L. J., and ZHANG, F. C. Low-cycle fatigue behavior and microstructural evolution in a low-carbon carbide-free bainitic steel. Materials and Design, 85, 487-496(2015) [59] OKUBO, S. and FUKUI, K. Complete stress-strain curves, for various rock types in uniaxial tension. International Journal of Rock Mechanics and Mining Sciences and Geomechanics, 33, 549-556(1996) [60] KIM, S. M. and AL-RUB, R. K. A. Meso-scale computational modeling of the plastic-damage response of cementitious composites. Cement and Concrete Research, 41, 339-358(2011) |