[1] Holley, M. C. and Ashmore, J. F. A cytoskeletal spring in cochlear outer hair cells. nature, 335, 635-637 (1988)
[2] Tolomeo, J. A., Steele, C. R., and Holley, M. C. Mechanical properties of the lateral cortex of mammalian auditory outer hair cells. Biophysical Journal, 71, 421-429 (1996)
[3] Chan, E., Suneson, A., and Ulfendahl, M. Acoustic trauma causes reversible stiffness changes in auditory sensory cells. Neuroscience, 83, 961-968 (1998)
[4] Hallworth, R. Passive compliance and active force generation in the guinea pig outer hair cell. Journal of Neurophysiology, 74, 2319-2328 (1995)
[5] Zwislocki, J. J. and Cefaratti, L. K. Tectorial membran II: stiffness measurements in vivo. Hearing Research, 42, 211-227 (1989)
[6] Edge, R. M., Evans, B. N., Pearce, M., Richter, C. P., Hu, X., and Dallos, P. Morphology of the unfixed cochlea. Hearing Research, 124, 1-16 (1998)
[7] Naidu, R. C. and Mountain, D. C. Longitudinal coupling in the basilar membrane. Journal of the Association for Research in Otolaryngology, 2, 257-267 (2001)
[8] Brundin, L., Flock, A., and Canlon, B. Sound-induced motility of isolated cochlear outer hair cells is frequency-specific. nature, 342, 814-816 (1989)
[9] De Boer, E. On active and passive cochlear models: towards ageneralized analysis. Journal of the Acoustical Society of America, 73, 574-576 (1983)
[10] Diependaal, R. J. and Viergever, M. A. Nonlinear and active two-dimensional cochlear models: time-domain solution. Journal of the Acoustical Society of America, 85, 803-812 (1989)
[11] Kanis, L. J. and de Boer, E. Comparing frequency-domain with time-domain solutions for a locally active nonlinear model of the cochlea. Journal of the Acoustical Society of America, 100, 2543-2546 (1996)
[12] Kanis, L. J. and de Boer, E. Frequency dependence of acoustic distortion products in a locally active model of the cochlea. Journal of the Acoustical Society of America, 101, 1527-1531 (1997)
[13] Zweig, G. Finding the impedance of the organ of Corti. Journal of the Acoustical Society of America, 89, 1229-1254 (1991)
[14] Allen, J. B. and Fahey, P. F. A second cochlear-frequency map that correlates distortion product and neural tuning measurements. Journal of the Acoustical Society of America, 94, 809-816 (1993)
[15] Lim, K. M. and Steele, C. R. A three-dimensional nonlinear active cochlear model analyzed by the WKB-numeric method. Hearing Research, 170, 190-205 (2002)
[16] Yoon, Y., Puria, S., and Steele, C. R. Intracochlear pressure and organ of Corti impedance from a linear active three-dimensional model. Oto-Rhino-Laryngology, 68, 365-372 (2006)
[17] Liberman, M. C. The cochlear frequency map for the cat: labeling auditory-nerve fibers of known characteristic frequency. Journal of the Acoustical Society of America, 72, 1441-1449 (1982)
[18] Muller, M. The cochlear place-frequency map of the adult and developing mongolian gerbil. Hearing Research, 94, 148-156 (1996)
[19] Greenwood, D. D. Critical bandwidth and the frequency coordinates of the basilar membrane. Journal of the Acoustical Society of America, 33, 1344-1356(1961)
[20] Greenwood, D. D. Comparing octaves, frequency ranges, and cochlear-map curvature across species. Hearing Research, 94, 157-162 (1996)
[21] Masayoshi, A. and Hiroshi, W. Prediction of the characteristics of two types of pressure waves in the cochlea: theoretical considerations. Journal of the Acoustical Society of America, 116, 417-425 (2004)
[22] Robles, L. and Ruggero, M. A. Mechanics of the mammalian cochlea. Physiological Reviews, 81, 1305-1352 (2001)
[23] Olson, E. S. Direct measurement of intra-cochlear pressure waves. nature, 402, 526-529 (1999)
[24] Yang, L., Hua, C., Dai, P. D., Yan, X. Q., Zhang, T. Y., Ding, G. H., Wang, K. Q., and Wang, Z. M. Two dimensional FEM analysis for dynamic behavior of the organ of Corti (in Chinese). Journal of Vibration and Shock, 27, 108-111 (2008)
[25] Zagadou, B. F., Barbone, P. E., and Mountain, D. C. Elastic properties of organ of Corti tissues from point-stiffness measurement and inverse analysis. Journal of Biomechanics, 47, 1270-1277 (2014)
[26] Cai, H., Shoelson, B., and Chadwick, R. S. Evidence of tectorial membrane radial motion in a propagating mode of a complex cochlear model. Proceedings of the National Academy of Sciences, 101, 6243-6248 (2004)
[27] Wang, Z. L., Wang, X. L., Hu, Y. J., Shi, H., and Cheng, H. M. FEM simulation of sound transmission based on integrated model of middle ear and cochlea. Chinese Journal of Biomedical Engineering, 30, 60-66 (2011)
[28] Nakajima, H. H., Ravicz, M. E., Rosowski, J. J., Peake, W. T., and Merchant, S. N. Experimental and clinical studies of malleus fixation. The Laryngoscope, 115, 147-154 (2005)
[29] Dai, C., Cheng, T., Wood, M. W., and Gan, R. Z. Fixation and detachment of superior and anterior malleolar ligaments in human middle ear: experiment and modeling. Hearing Research, 230, 24-33 (2007) |