[1] PENDRY, J., SCHURIG, D., and SMITH, D. Controlling electromagnetic fields. Science, 312(5781), 1780-1782(2006) [2] MILTON, G. W., BRIANE, M., and WILLIS, J. R. On cloaking for elasticity and physical equations with a transformation invariant form. New Journal of Physics, 8(10), 248(2006) [3] CUMMER, S. A. and SCHURIG, D. One path to acoustic cloaking. New Journal of Physics, 9(3), 45(2007) [4] NORRIS, A. N. Acoustic metafluids. Journal of the Acoustical Society of America, 125(2), 839-849(2009) [5] LI, B. L., LI, T. H., WU, J., HUI, M., YUAN, G., and ZHU, Y. S. An arbitrary-shaped acoustic cloak with merits beyond the internal and external cloaks. Acoustical Physics, 63(1), 45-53(2017) [6] CHEN, H. and CHAN, C. T. Acoustic cloaking and transformation acoustics. Journal of Physics D:Applied Physics, 43(11), 113001(2010) [7] YING, C., FAN, Y., JIAN, Y., and XIAO, J. L. A multilayer structured acoustic cloak with homogeneous isotropic materials. Applied Physics Letter, 92(15), 1780(2008) [8] WU, L. and GAO, P. Manipulation of the propagation of out-of-plane shear waves. International Journal of Solids and Structure, 69-70, 383-391(2015) [9] POMOT, L., PAYAN, C., REMILLIEUX, M., and GUENNNEAU, S. Acoustic cloaking:geometric transform, homogenization and a genetic algorithm. Wave Motion, 92, 102413(2020) [10] CUMMER, S. A., CHRISSTENSEN, J., and ANDREA, A. Controlling sound with acoustic metamaterials. Nature Reviews Materials, 1(3), 16001(2016) [11] GAO, D. B. and ZENG, X. W. Approximation approach of realizing an arbitrarily shaped acoustic cloak with homogeneous isotropic materials. Chinese Physics Letter, 29(11), 114302(2012) [12] CAO, J., QI, F., and YAN, S. The required acoustic parameters simplification of invisibility cloaks and concentrators using the impedance-tunable coordinate transformation. Scientific Reports, 11(1), 920(2021) [13] LIU, M. and ZHU, W. D. Design and analysis of nonlinear-transformation-based broadband cloaking for acoustic wave propagation. Wave Motion, 92, 102421(2020) [14] ZHOU, H. T., FAN, S. W., LI, X. S., FU, W. X., WANG, Y. F., and WANG, Y. S. Tunable arcshaped acoustic metasurface carpet cloak. Smart Materials and Structures, 29(6), 065016(2020) [15] ZHOU, H. T., FU, W. X., WANG, Y. F., WANG, Y. S., LAUDE, V., and ZHANG, C. Z. Ultrabroadband passive acoustic metasurface for wide-angle carpet cloaking. Materials&Design, 199, 109414(2020) [16] CHEN, Z., YAN, F., NEGAHBAN, M., and LI, Z. Extremely thin reflective metasurface for lowfrequency underwater acoustic waves:sharp focusing, self-bending, and carpet cloaking. Journal of Applied Physics, 130(12), 125304(2021) [17] SONG, A., SUN, C., XIANG, Y., and XUAN, F. Z. Switchable acoustic metagrating for threechannel retroreflection and carpet cloaking. Applied Physics Express, 15(2), 024002(2022) [18] YANG, T. Z., WU, Q. H., XU, W. K., LIU, D., and HUANG, L. J. A thermal ground cloak. Physics Letter A, 380(7-8), 965-969(2016) [19] ZIGONEANU, L., POPA, B. I., and CUMMER, S. A. Three-dimensional broadband omnidirectional acoustic ground cloak. Nature Materials, 13(4), 352-355(2014) [20] XIONG, J., CHEN, T. N., WANG, X. P., and ZHU, J. Design and assessment of an acoustic ground cloak with layered structure. International Journal of Modern Physics B, 29(27), 155091(2015) [21] BI, Y. F., JIA, H., LU, W. J., JI, P. F., and YANG, J. Design and demonstration of an underwater acoustic carpet cloak. Scientific Reports, 7(1), 705(2017) [22] BI, Y. F., JIA, H., SUN, Z. Y., YANG, Y. Z., ZHAO, H., and YANG, J. Experimental demonstration of three-dimensional broadband underwater acoustic carpet cloak. Applied Physics Letters, 112(22), 223502(2018) [23] ZHU, W., DING, C., and ZHAO, X. A numerical method for designing acoustic cloak with homogeneous metamaterials. Applied Physics Letter, 97(13), 4773(2010) [24] LI, Q. and VIPPERMAN, J. S. Two-dimensional acoustic cloaks of arbitrary shape with layered structure based on transformation acoustics. Applied Physics Letter, 105(10), 101906(2014) [25] ZHU, R., ZHENG, B., MA, C., XU, J., FANG, N., and CHEN, H. A broadband polygonal cloak for acoustic wave designed with linear coordinate transformation. Journal of the Acoustical Society of America, 140(1), 95(2016) [26] ZHU, G. H. Designing a square invisibility cloak using metamaterials made of stacked positivenegative index slabs. Journal of Applied Physics, 113(16), 1780-1782(2013) [27] JIAN, Z., CHEN, T., LIANG, Q., WANG, X., JIE, X., and PING, J. Acoustic invisibility cloaks of arbitrary shapes for complex background media. Applied Physics A, 122(4), 1-7(2016) [28] ZHU, J., CHEN, T. N., SONG, X. P., CHEN, C., LIU, Z. Q., and ZHANG, J. Z. Three-dimensional large-scale acoustic invisibility cloak with layered metamaterials for underwater operation. Physica Scripta, 94(11), 115003(2019) [29] YANG, S. K., LIN, J. C., and CHENG, J. W. Three-dimensional elliptical cloak by impedance design of meta-composite cloak shell structure. Journal of the Chinese Institute of Engineers, 40, 34-44(2016) [30] NING, L., WANG, Y. Z., and WANG, Y. S. Active control cloak of the elastic wave metamaterial. International Journal of Solids and Structure, 202, 126-135(2020) [31] LIN, C., LIU, D., EGGLER, D., and KESSISSOGLOU, N. Active acoustic cloaking and illusions of sound-hard bodies using the boundary element method. Journal of the Acoustical Society of America, 149(3), 1803-1812(2021) [32] XUE, Y. and ZHANG, X. Self-adaptive acoustic cloak enabled by soft mechanical metamaterial. Extreme Mechanics Letters, 46, 101347(2021) [33] GHORESHI, M. and BAHRAMIA, A. Acoustic invisibility cloak based on two-dimensional solidfluid phononic crystals. Solid State Communications, 342, 114646(2022) [34] AHMED, W. W., FARHAT, M., ZHANG, X., and WU, Y. Deterministic and probabilistic deep learning models for inverse design of broadband acoustic cloak. Physical Review Research, 3(1), 013142(2021) [35] CAI, L. W. Optimizing imperfect cloaks to perfection. Journal of the Acoustical Society of America, 132(4), 2923-2931(2012) [36] MA, Z., STALNOV, O., and HUANG, X. Design method for an acoustic cloak in flows by topology optimization. Acta Mechanica Sinica, 35(5), 964-971(2019) [37] FUJII, G., TAKAHASHI, M., and AKIMOTO, Y. Acoustic cloak designed by topology optimization for acoustic-elastic coupled systems. Applied Physics Letters, 118(10), 101102(2021) [38] MA, H., QU, S., XU, Z., ZHANG, J., CHEN, B. W., and WANG, J. F. Material parameter equation for elliptical cylindrical cloaks. Physical Review A, 77(1), 179-182(2008) [39] JO, C. and OH, I. K. A revisit to imperfect acoustic cloak of multi-layered shell structures considering sound speed and impedance matching. Journal of Sound and Vibration, 333(19), 4637-4652(2014) [40] ZHOU, X. and HU, G. Acoustic wave transparency for a multilayered sphere with acoustic metamaterials. Physical Review E, 75(4), 046606(2007) |