Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (11): 1857-1874.doi: https://doi.org/10.1007/s10483-024-3187-6
• • 下一篇
收稿日期:
2024-05-05
出版日期:
2024-11-03
发布日期:
2024-10-30
Jiajie GONG1, Xinyue LIU1,2, Yancong ZHANG1, Fengping ZHU3,*(), Guohui HU1,*(
)
Received:
2024-05-05
Online:
2024-11-03
Published:
2024-10-30
Contact:
Fengping ZHU, Guohui HU
E-mail:fpzhu@fudan.edu.cn;ghhu@staff.shu.edu.cn
Supported by:
中图分类号:
. [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(11): 1857-1874.
Jiajie GONG, Xinyue LIU, Yancong ZHANG, Fengping ZHU, Guohui HU. Prediction of single cell mechanical properties in microchannels based on deep learning[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(11): 1857-1874.
1 | EL-ALI,J.,SORGER,P. K., andJENSEN,K. F.Cells on chips.nature,442(7101),403-411(2006) |
2 | FRITSCH,A.,HÖCKEL,M.,KIESSLING,T.,NNETU,K. D.,WETZEL,F.,ZINK,M., andKÄS,J. A.Are biomechanical changes necessary for tumour progression?.Nature Physics,6(10),730-732(2010) |
3 | BYUN,S.,SON,S.,AMODEI,D.,CERMAK,N.,SHAW,J.,KANG,J. H., andMANALIS,S. R.Characterizing deformability and surface friction of cancer cells.Proceedings of the National Academy of Sciences,110(19),7580-7585(2013) |
4 | ISERMANN,P., andLAMMERDING,J.Nuclear mechanics and mechanotransduction in health and disease.Current Biology,23(24),R1113-R1121(2013) |
5 | DI CARLO,D.A mechanical biomarker of cell state in medicine.Journal of Laboratory Automation,17(1),32-42(2012) |
6 | GUZNICZAK,E.,MOHAMMAD-ZADEH,M.,DEMPSEY,F.,JIMENEZ,M.,BOCK,H.,WHYTE,G., andBRIDLE,H.High-throughput assessment of mechanical properties of stem cell derived red blood cells, toward cellular downstream processing.Scientific Reports,7(1),14457(2017) |
7 | GUCK,J., andCHILVERS,E. R.Mechanics meets medicine.Science Translational Medicine,5(212),212fs41(2013) |
8 | TREPAT,X.,DENG,L.,AN,S. S.,NAVAJAS,D.,TSCHUMPERLIN,D. J.,GERTHOFFER,W. T., andFREDBERG,J. J.Universal physical responses to stretch in the living cell.nature,447(7144),592-595(2007) |
9 | DENG,L.,TREPAT,X.,BUTLER,J. P.,MILLET,E.,MORGAN,K. G.,WEITZ,D. A., andFREDBERG,J. J.Fast and slow dynamics of the cytoskeleton.Nature Materials,5(8),636-640(2006) |
10 | EKPENYONG,A. E.,WHYTE,G.,CHALUT,K.,PAGLIARA,S.,LAUTENSCHLÄGER,F.,FIDDLER,C., andGUCK,J.Viscoelastic properties of differentiating blood cells are fate-and function-dependent.PLoS ONE,7(9),e45237(2012) |
11 | LAUTENSCHLÄGER,F.,PASCHKE,S.,SCHINKINGER,S.,BRUEL,A.,BEIL,M., andGUCK,J.The regulatory role of cell mechanics for migration of differentiating myeloid cells.Proceedings of the National Academy of Sciences,106(37),15696-15701(2009) |
12 | TSE,H. T.,GOSSETT,D. R.,MOON,Y. S.,MASAELI,M.,SOHSMAN,M.,YING,Y., andDI CARLO,D.Quantitative diagnosis of malignant pleural effusions by single-cell mechanophenotyping.Science Translational Medicine,5(212),212ra163(2013) |
13 | SHAREI,A.,ZOLDAN,J.,ADAMO,A.,SIM,W. Y.,CHO,N.,JACKSON,E., andJENSEN,K. F.A vector-free microfluidic platform for intracellular delivery.Proceedings of the National Academy of Sciences,110(6),2082-2087(2013) |
14 | LEE,J.,SHAREI,A.,SIM,W. Y.,ADAMO,A.,LANGER,R.,JENSEN,K. F., andBAWENDI,M. G.Nonendocytic delivery of functional engineered nanoparticles into the cytoplasm of live cells using a novel, high-throughput microfluidic device.Nano Letters,12(12),6322-6327(2012) |
15 | CHAI,J., andSONG,Q.Multiple-protein detections of single-cells reveal cell-cell heterogeneity in human cells.IEEE Transactions on Biomedical Engineering,62(1),30-38(2014) |
16 | UNAL,M.,ALAPAN,Y.,JIA,H.,VARGA,A. G.,ANGELINO,K.,ASLAN,M., andGURKAN,U. A.Micro and nano-scale technologies for cell mechanics.Nanobiomedicine,1,1-5(2014) |
17 | HAO,Y.,CHENG,S.,TANAKA,Y.,HOSOKAWA,Y.,YALIKUN,Y., andLI,M.Mechanical properties of single cells: measurement methods and applications.Biotechnology Advances,45,107648(2020) |
18 | WU,P. H.,AROUSH,D. R. B.,ASNACIOS,A.,CHEN,W. C.,DOKUKIN,M. E.,DOSS,B. L., andWIRTZ,D.A comparison of methods to assess cell mechanical properties.Nature Methods,15,491-498(2018) |
19 | BENTO,D.,RODRIGUES,R. O.,FAUSTINO,V.,PINHO,D.,FERNANDES,C. S.,PEREIRA,A. I., andLIMA,R.Deformation of red blood cells, air bubbles, and droplets in microfluidic devices: flow visualizations and measurements.Micromachines,9(4),151(2018) |
20 | TOEPFNER,N.,HEROLD,C.,OTTO,O.,ROSENDAHL,P.,JACOBI,A.,KRÄTER,M.,STÄCHELE,J.,MENSCHNER,L.,HERBIG,M.,CIUFFREDA,L.,FORD-CARTWRIGHT,L.,GRZYBEK,M.,COSKUN,Ü.,REITHUBER,E.,GARRISS,G.,MELLROTH,P.,HENRIQUES-NORMARK,B.,TREGAY,N.,SUTTORP,M.,BORNHÄUSER,M.,CHILVERS,E. R.,BERNER,R., andGUCK,J.Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood.eLife,7,e29213(2018) |
21 | XIE,J., andHU,G. H.Computational modelling of membrane gating in capsule translocation through microchannel with variable section.Microfluidics and Nanofluidics,25(2),17(2021) |
22 | ABKARIAN,M.,FAIVRE,M., andSTONE,H. A.High-speed microfluidic differential manometer for cellular-scale hydrodynamics.Proceedings of the National Academy of Sciences,103(3),538-542(2006) |
23 | BOW,H.,PIVKIN,I. V.,DIEZ-SILVA,M.,GOLDFLESS,S. J.,DAO,M.,NILES,J. C., andHAN,J.A microfabricated deformability-based flow cytometer with application to malaria.Lab on a Chip,11(6),1065-1073(2011) |
24 | GOSSETT,D. R.,TSE,H. T.,LEE,S. A.,YING,Y.,LINDGREN,A. G.,YANG,O. O., andDICARLO,D.Hydrodynamic stretching of single cells for large population mechanical phenotyping.Proceedings of the National Academy of Sciences,109(20),7630-7635(2012) |
25 | AI,J. F.,XIE,J., andHU,G. H.Numerical simulation of red blood cells deformation in microchannel under zero-net-mass-flux jet.Acta Physica Sinica,69(23),234701(2020) |
26 |
LIU,X. Y.,AI,J. F.,XIE,J., andHU,G. H.Numerical study of opposed zero-net-mass-flow jet-induced erythrocyte mechanoporation.Applied Mathematics and Mechanics (English Edition),43(11),1763-1776(2022)
doi: 10.1007/s10483-022-2931-6 |
27 | MACQUEEN,L. A.,BUSCHMANN,M. D., andWERTHEIMER,M. R.Mechanical properties of mammalian cells in suspension measured by electro-deformation.Journal of Micromechanics and Microengineering,20(6),065007(2010) |
28 | BEECH,J. P.,HOLM,S. H.,ADOLFSSON,K., andTEGENFELDT,J. O.Sorting cells by size, shape and deformability.Lab on a Chip,12(6),1048-1051(2012) |
29 | OTTO,O.,ROSENDAHL,P.,MIETKE,A.,GOLFIERS,S.,HEROLD,C.,KLAUE,D., andGUCK,J.Real-time deformability cytometry: on-the-fly cell mechanical phenotyping.Nature Methods,12(3),199-202(2015) |
30 | ROSENDAHL,P.,PLAK,K.,JACOBI,A.,KRAETER,M.,TOEPFNER,N.,OTTO,O., andGUCK,J.Real-time fluorescence and deformability cytometry.Nature Methods,15(5),355-358(2018) |
31 | MIETKE,A.,OTTO,O.,GIRARDO,S.,ROSENDAHL,P.,TAUBENBERGER,A.,GOLFIERS,S., andFISCHER-FRIEDRICH,E.Extracting cell stiffness from real-time deformability cytometry: theory and experiment.Biophysical Journal,109(10),2023-2036(2015) |
32 | MOKBEL,M.,MOKBEL,D.,MIETKE,A.,TRABER,N.,GIRARDO,S.,OTTO,O., andALAND,S.Numerical simulation of real-time deformability cytometry to extract cell mechanical properties.ACS Biomaterials Science and Engineering,3(11),2962-2973(2017) |
33 | SARKER,I. H.Machine learning: algorithms, real-world applications and research directions.SN Computer Science,2(3),160(2021) |
34 | PRALJAK,N.,IRAM,S.,GOREKE,U.,SINGH,G.,HILL,A.,GURKAN,U. A., andHINCZEWSKI,M.Integrating deep learning with microfluidics for biophysical classification of sickle red blood cells adhered to laminin.PLoS Computational Biology,17(11),e1008946(2021) |
35 | HEIDARI,M.,LAKSHMIVARAHAN,S.,MIRNIAHARIKANDEHEI,S.,DANALA,G.,MARYADA,S. K. R.,LIU,H., andZHENG,B.Applying a random projection algorithm to optimize machine learning model for breast lesion classification.IEEE Transactions on Biomedical Engineering,68(9),2764-2775(2021) |
36 | TIAN,Y.,LIN,W.,QU,K.,WANG,Z., andZHU,X.Insights into cell classification based on combination of multiple cellular mechanical phenotypes by using machine learning algorithm.Journal of the Mechanical Behavior of Biomedical Materials,128,105097(2022) |
37 | PHILLIP,J. M.,HAN,K. S.,CHEN,W. C.,WIRTZ,D., andWU,P. H.A robust unsupervised machine-learning method to quantify the morphological heterogeneity of cells and nuclei.Nature Protocols,16(2),754-774(2021) |
38 | SONG,T. H.,SANCHEZ,V.,EIDALY,H., andRAJPOOT,N. M.Dual-channel active contour model for megakaryocytic cell segmentation in bone marrow trephine histology images.IEEE Transactions on Biomedical Engineering,64(12),2913-2923(2017) |
39 | HERBIG,M.,JACOBI,A.,WOBUS,M.,WEIDNER,H.,MIES,A.,KRÄTER,M.,OTTO,O.,THIEDE,C.,WEICKERT,M.,GÖTZE,K. S.,RAUNER,M.,HOFBAUER,L. C.,BORNHÄUSER,M.,GUCK,J.,ADER,M.,PLATZBECKER,U., andBALAIAN,E.Machine learning assisted real-time deformability cytometry of CD34+ cells allows to identify patients with myelodysplastic syndromes.Scientific Reports,12(1),870(2022) |
40 | ISLAM,S.,SHAH,V.,GIDDE,S. T. R.,HUTAPEA,P.,SONG,S. H.,PICONE,J., andKIM,A.A machine learning enabled wireless intracranial brain deformation sensing system.IEEE Transactions on Biomedical Engineering,67(12),3521-3530(2020) |
41 | LEE,S.,LUKAN,J.,BOYKO,T.,ZELENOVA,K.,MAKLED,B.,PARSEY,C., andDE,S.A deep learning model for burn depth classification using ultrasound imaging.Journal of the Mechanical Behavior of Biomedical Materials,125,104930(2022) |
42 | SHEN,S. C. Y.,FERNÁNDEZ,M. P.,TOZZI,G., andBUEHLER,M. J.Deep learning approach to assess damage mechanics of bone tissue.Journal of the Mechanical Behavior of Biomedical Materials,123,104761(2021) |
43 | KARNIADAKIS,G. E.,KEVREKIDIS,I. G.,LU,L.,PERDIKARIS,P.,WANG,S., andYANG,L.Physics-informed machine learning.Nature Reviews Physics,3(6),422-440(2021) |
44 | LIN,T.,WANG,Z.,LU,R.,WANG,W., andSUI,Y.Characterising mechanical properties of flowing microcapsules using a deep convolutional neural network.Advances in Applied Mathematics and Mechanics,14(1),79-100(2022) |
45 | LIN,T.,WANG,Z.,WANG,W., andSUI,Y.A neural network-based algorithm for high-throughput characterisation of viscoelastic properties of flowing microcapsules.Soft Matter,17(15),4027-4039(2021) |
46 | GUO,Z.,LIN,T.,JING,D.,WANG,W., andSUI,Y.A method for real-time mechanical characterisation of microcapsules.Biomechanics and Modeling in Mechanobiology,22(4),1209-1220(2023) |
47 | NGUYEN,D.,TAO,L.,YE,H., andLI,Y.Machine learning-based prediction for single-cell mechanics.Mechanics of Materials,180,104631(2023) |
48 | LIANG,L.,LIU,M., andSUN,W.A deep learning approach to estimate chemically-treated collagenous tissue nonlinear anisotropic stress-strain responses from microscopy images.Acta Biomaterialia,63,227-235(2017) |
49 | MARTÍNEZ-MARTÍNEZ,F.,RUPÉREZ-MORENO,M. J.,MARTíNEZ-SOBER,M.,SOLVES-LLORENS,J. A.,LORENTE,D.,SERRANO-LÓPEZ,A. J.,MARTÍNEZ-SANCHIS,S.,MONSERRAT,C., andMARTÍN-GUERRERO,J. D.A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time.Computers in Biology and Medicine,90,116-124(2017) |
50 | XIAO,P.,HAQUE,E.,ZHANG,T.,DONG,X. N.,HUANG,Y., andWANG,X.Can DXA image-based deep learning model predict the anisotropic elastic behavior of trabecular bone?.Journal of the Mechanical Behavior of Biomedical Materials,124,104834(2021) |
51 | WANG, Z., LUO, W., GAO, L., and LI, M. Modeling the bottom-up filling of through silicon vias with different additives. 15th International Conference on Electronic Packaging Technology, IEEE, Chengdu (2014) |
52 | YANEN, W., SHENGMIN, W., YAN, X. T., YAO, C., and MING, Y. Computer simulation for bone scaffolds on account of fluid-solid coupling model. 2009 International Forum on Computer Science-Technology and Applications, IEEE, Chongqing (2009) |
53 | LIU,X.,GUI,N.,WU,H.,YANG,X.,TU,J., andJIANG,S.Numerical simulation of flow past stationary and oscillating deformable circles with fluid-structure interaction.Experimental and Computational Multiphase Flow,2,151-161(2020) |
54 | KALLIONTZIS,D.Fluid-structure interaction with ALE formulation and skeleton-based structural models.Journal of Fluids and Structures,110,103513(2022) |
55 | FOURNIER,J. B., andBARBETTA,C.Direct calculation from the stress tensor of the lateral surface tension of fluctuating fluid membranes.Physical Review Letters,100(7),078103(2008) |
56 | PENROSE,J. M. T., andSTAPLES,C. J.Implicit fluid-structure coupling for simulation of cardiovascular problems.International Journal for Numerical Methods in Fluids,40(3-4),467-478(2002) |
57 | WEI,X.,SANG,J.,TIAN,C.,SUN,L., andLIU,B.Different types of constitutive parameters red blood cell membrane based on machine learning and FEM.International Journal of Computational Methods,20(3),2250057(2023) |
58 | HAN,Y.,LIN,H.,DING,M.,LI,R., andSHI,T.Flow-induced translocation of vesicles through a narrow pore.Soft Matter,15(16),3307-3314(2019) |
59 | POZRIKIDIS,C.Modeling and Simulation of Capsules and Biological Cells,Chapman and Hall/CRC,New York(2003) |
60 | SKALAK,R.,TOZEREN,A.,ZARDA,R. P., andCHIEN,S.Strain energy function of red blood cell membranes.Biophysical Journal,13(3),245-264(1973) |
61 | BERGSTROM,J. S.Mechanics of Solid Polymers: Theory and Computational Modeling,William Andrew,New York(2015) |
62 | HOWELL,P.,KOZYREFF,G., andOCKENDON,J.Applied Solid Mechanics,Cambridge University Press,Cambridge(2009) |
63 | GREEN,A. E., andADKINS,J. E.Large Elastic Deformations,Oxford University Press,Oxford(1970) |
64 | KUZNETSOVA,T. G.,STARODUBTSEVA,M. N.,YEGORENKOV,N. I.,CHIZHIK,S. A., andZHDANOV,R. I.Atomic force microscopy probing of cell elasticity.Micron,38(8),824-833(2007) |
65 | SUZUKI,S.Topological structural analysis of digitized binary images by border following.Computer Vision, Graphics, and Image Processing,30(1),32-46(1985) |
66 | DIETTERICH, T. G. Ensemble methods in machine learning. International Workshop on Multiple Classifier Systems, Springer, Heidelberg, 1–15 (2000) |
[1] | Jianhua QIN, Fei LIAO, Guodan DONG, Xiaolei YANG. Parallelization strategies for resolved simulations of fluid-structure-particle interactions[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(5): 857-872. |
[2] | M. RAHMAN, M. TURKYILMAZOGLU, Z. MUSHTAQ. Effects of multiple shapes for steady flow with transformer oil+Fe3O4+TiO2 between two stretchable rotating disks[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 373-388. |
[3] | H. OWHADI. Gaussian process hydrodynamics[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(7): 1175-1198. |
[4] | A. V. ROŞCA, N. C. ROŞCA, I. POP. Three-dimensional mixed convection stagnation-point flow past a vertical surface with second-order slip velocity[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(4): 641-652. |
[5] | Kunpeng WANG, Qingxiang LI, Yuhong DONG. Transport of dissolved oxygen at the sediment-water interface in the spanwise oscillating flow[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(4): 527-540. |
[6] | S. NADEEM, S. AKHTAR, A. SALEEM. Peristaltic flow of a heated Jeffrey fluid inside an elliptic duct: streamline analysis[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(4): 583-592. |
[7] | G. C. SHIT, S. MUKHERJEE. MHD graphene-polydimethylsiloxane Maxwell nanofluid flow in a squeezing channel with thermal radiation effects[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(9): 1269-1284. |
[8] | Luyu SHEN, Changgen LU, Xiaoqing ZHU. Leading-edge receptivity of boundary layer to three-dimensional free-stream turbulence[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(6): 851-860. |
[9] | Beiji SHI, Xiaolei YANG, Guodong JIN, Guowei HE, Shizhao WANG. Wall-modeling for large-eddy simulation of flows around an axisymmetric body using the diffuse-interface immersed boundary method[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(3): 305-320. |
[10] | A. MAHDY. Simultaneous impacts of MHD and variable wall temperature on transient mixed Casson nanofluid flow in the stagnation point of rotating sphere[J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(9): 1327-1340. |
[11] | Hang XU, I. POP, Q. SUN. Fluid flow driven along microchannel by its upper stretching wall with electrokinetic effects[J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(3): 395-408. |
[12] | H. ASHRAF, A. M. SIDDIQUI, M. A. RANA. Fallopian tube assessment of the peristaltic-ciliary flow of a linearly viscous fluid in a finite narrow tube[J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(3): 437-454. |
[13] | Xiaodi WU, Fu CHEN, Huaping LIU. Combined immersed boundary method and multiple-relaxation-time lattice Boltzmann flux solver for numerical simulations of incompressible flows[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(12): 1679-1696. |
[14] | Luyu SHEN, Changgen LU. Mechanism of three-dimensional boundary-layer receptivity[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(9): 1213-1224. |
[15] | M. M. LARIMI, A. RAMIAR, A. A. RANJBAR. Numerical simulation of magnetic drug targeting with Eulerian-Lagrangian model and effect of viscosity modification due to diabetics[J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(12): 1631-1646. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||