This paper has successfully addressed three critical but overlooked issues in nonlocal elastic stress field theory for nanobeams: (i) why does the presence of increasing nonlocal effects induce reduced nanostructural stiffness in many, but not consistently for all, cases of study, i.e., increasing static deflection, decreasing natural frequency and decreasing buckling load, although physical intuition according to the nonlocal elasticity field theory first established by Eringen tells otherwise? (ii) the intriguing conclusion that nanoscale effects are missing in the solutions in many exemplary cases of study, e.g., bending deflection of a cantilever nanobeam with a point load at its tip; and (iii) the non-existence of additional higher-order boundary conditions for a higher-order governing differential equation. Applying the nonlocal elasticity field theory in nanomechanics and an exact variational principal approach, we derive the new equilibrium conditions, domain governing differential equation and boundary conditions for bending of nanobeams. These equations and conditions involve essential higher-order differential terms which are opposite in sign with respect to the previously studies in the statics and dynamics of nonlocal nano-structures. The difference in higher-order terms results in reverse trends of nanoscale effects with respect to the conclusion of this paper. Effectively, this paper reports new equilibrium conditions, governing differential equation and boundary conditions and the true basic static responses for bending of nanobeams. It is also concluded that the widely accepted equilibrium conditions of nonlocal nanostructures are in fact not in equilibrium, but they can be made perfect should the nonlocal bending moment be replaced by an effective nonlocal bending moment. These conclusions are substantiated, in a general sense, by other approaches in nanostructural models such as strain gradient theory, modified couple stress models and experiments.
In this study, the effects of magnetic field and nanoparticle on the Jeffery-Hamel flow are studied using a powerful analytical method called the Adomian decomposition method (ADM). The traditional Navier-Stokes equation of fluid mechanics and Maxwell’s electromagnetism governing equations are reduced to nonlinear ordinary differential equations to model the problem. The obtained results are well agreed with that of the Runge-Kutta method. The present plots confirm that the method has high accuracy for different α, Ha, and Re numbers. The flow field inside the divergent channel is studied for various values of Hartmann number and angle of channel. The effect of nanoparticle volume fraction in the absence of magnetic field is investigated.
This article studies the Soret and Dufour effects on the magnetohydrodynamic (MHD) flow of the Casson fluid over a stretched surface. The relevant equations are first derived, and the series solution is constructed by the homotopic procedure. The results for velocities, temperature, and concentration fields are displayed and discussed. Numerical values of the skin friction coefficient, the Nusselt number, and the Sherwood number for different values of physical parameters are constructed and analyzed. The convergence of the series solutions is examined.
The problem of the steady magnetohydrodynamic (MHD) stagnation-point flow of an incompressible viscous fluid over a stretching sheet is studied. The effect of an induced magnetic field is taken into account. The nonlinear partial differential equations are transformed into ordinary differential equations via the similarity transformation. The transformed boundary layer equations are solved numerically using the shooting method. Numerical results are obtained for various magnetic parameters and Prandtl numbers. The effects of the induced magnetic field on the skin friction coefficient, the local Nusselt number, the velocity, and the temperature profiles are presented graphically and discussed in detail.
The steady two-dimensional magnetohydrodynamic stagnation flow towards a nonlinear stretching surface is studied. The no-slip condition on the solid boundary is replaced with a partial slip condition. A scaling group transformation is used to get the invariants. Using the invariants, a third-order ordinary differential equation corresponding to the momentum is obtained. An analytical solution is obtained in a series form using a homotopy analysis method. Reliability and efficiency of series solutions are shown by the good agreement with numerical results presented in the literature. The effects of the slip parameter, the magnetic field parameter, the velocity ratio parameter, the suction velocity parameter, and the power law exponent on the flow are investigated. The results show that the velocity and shear stress profiles are greatly influenced by these parameters.
The boundary-layer flow and heat transfer in a viscous fluid containing metallic nanoparticles over a nonlinear stretching sheet are analyzed. The stretching velocity is assumed to vary as a power function of the distance from the origin. The governing partial differential equation and auxiliary conditions are reduced to coupled nonlinear ordinary differential equations with the appropriate corresponding auxiliary conditions. The resulting nonlinear ordinary differential equations (ODEs) are solved numerically. The effects of various relevant parameters, namely, the Eckert number Ec, the solid volume fraction of the nanoparticles φ , and the nonlinear stretching parameter n are discussed. The comparison with published results is also presented. Different types of nanoparticles are studied. It is shown that the behavior of the fluid flow changes with the change of the nanoparticles type.
The magnetohydrodynamic (MHD) flow of the third grade fluid between two permeable disks with heat transfer is investigated. The governing partial differential equa-tions are converted into the ordinary differential equations by suitable transformations. The transformed equations are solved by the homotopy analysis method (HAM). The expressions for square residual errors are defined, and the optimal values of convergence-control parameters are selected. The dimensionless velocity and temperature fields are examined for various dimensionless parameters. The skin friction coefficient and the Nus-selt number are tabulated to analyze the effects of dimensionless parameters.
null
The main purpose of this study is to survey numerically comparison of twophase and single phase of heat transfer and flow field of copper-water nanofluid in a wavy channel. The computational fluid dynamics (CFD) prediction is used for heat transfer and flow prediction of the single phase and three different two-phase models (mixture, volume of fluid (VOF), and Eulerian). The heat transfer coefficient, temperature, and velocity distributions are investigated. The results show that the differences between the temperature field in the single phase and two-phase models are greater than those in the hydrodynamic field. Also, it is found that the heat transfer coefficient predicted by the single phase model is enhanced by increasing the volume fraction of nanoparticles for all Reynolds numbers; while for the two-phase models, when the Reynolds number is low, increasing the volume fraction of nanoparticles will enhance the heat transfer coefficient in the front and the middle of the wavy channel, but gradually decrease along the wavy channel.
The problem of laminar fluid flow, which results from the stretching of a vertical surface with variable stream conditions in a nanofluid due to solar energy, is in- vestigated numerically. The model used for the nanofluid incorporates the effects of the Brownian motion and thermophoresis in the presence of thermal stratification. The sym- metry groups admitted by the corresponding boundary value problem are obtained by using a special form of Lie group transformations, namely, the scaling group of transfor- mations. An exact solution is obtained for the translation symmetrys, and the numerical solutions are obtained for the scaling symmetry. This solution depends on the Lewis number, the Brownian motion parameter, the thermal stratification parameter, and the thermophoretic parameter. The conclusion is drawn that the flow field, the temperature, and the nanoparticle volume fraction profiles are significantly influenced by these param- eters. Nanofluids have been shown to increase the thermal conductivity and convective heat transfer performance of base liquids. Nanoparticles in the base fluids also offer the potential in improving the radiative properties of the liquids, leading to an increase in the efficiency of direct absorption solar collectors.
Large-view flow field measurements using the particle image velocimetry (PIV) technique with high resolution CCD cameras on a rotating 1/8 scale blade model of the NREL UAE phase VI wind turbine are conducted in the engineering-oriented Φ3.2m wind tunnel. The motivation is to establish the database of the initiation and development of the tip vortex to study the flow structure and mechanism of the wind turbine. The results show that the tip vortex first moves inward for a very short period and then moves outward with the wake expansion, while its vorticity decreases with time after being trailed from the trailing edge of the blade tip, and then increases continuously with the rapid rolling-up to form a strong tip vortex. The measurements also indicate that the downstream movement of the tip vortex is nearly linear in the very near wake under the test condition.