[1] Burns, J. C. and Parks, T. A review of steam soak operations in California. Journal of Fluid Mechanics, 29, 405-416 (1967)
[2] Asako, Y. and Faghri, M. Finite volume solutions for laminar flow an heat transfer in a corrugated duct. Journal of Heat Transfer, 109, 627-634 (1987)
[3] Rush, T. A., Newell, T. A., and Jacobi, A. M. An experimental study of flow and heat transfer in sinusoidal wavy passages. International Journal of Heat and Mass Transfer, 42, 1541-1553 (1999)
[4] Wang, C. C., Jang, J. Y., and Chiou, N. F. A heat transfer and friction correlation for wavy fin-and-tube heat exchangers. International Journal of Heat and Mass Transfer, 42, 1919-1924 (1999)
[5] Wang, C. C. and Chen, C. K. Forced convection in a wavy-wall channel. International Journal of Heat and Mass Transfer, 45, 2587-2595 (2002)
[6] Fabbri, G. Heat transfer optimization in corrugated wall channels. International Journal of Heat and Mass Transfer, 43, 4299-4310 (2000)
[7] Comini, G., Nonino, C., and Savino, S. Effect of aspect ratio on convection enhancement in wavy channels. Numerical Heat Transfer, Part A, 44, 21-37 (2003)
[8] Nilpueng, K. and Wongwises, S. Flow pattern and pressure drop of vertical upward gas-liquid flow in sinusoidal wavy channels. Experimental Thermal and Fluid Science, 30, 523-534 (2006)
[9] Chang, S. W., William Lees, A., and Chou, T. Heat transfer and pressure drop in furrowed channels with transverse and skewed sinusoidal wavy walls. International Journal of Heat and Mass Transfer, 52, 4592-4603 (2009)
[10] Assato, M. and de Lemos, M. J. S. Turbulent flow in wavy channels simulated with nonlinear models and a new implicit formulation. Numerical Heat Transfer, Part A, 56, 301-324 (2009)
[11] Stone, K. and Vanka, S. P. Numerical study of developing flow and heat transfer in a wavy passage. Journal of Fluids Engineering, 121, 713-719 (1999)
[12] Choi, U. S. Enhancing thermal conductivity of fluids with nanoparticles. ASME FED, 231, 99-103 (1995)
[13] Maxwell, J. C. A Treatise on Electricity and Magnetism, 2nd ed., Cambridge Oxford University Press, Oxford (1904)
[14] Maxwell, J. C. Electricity and Magnetism, Clarendon Press, Oxford (1873)
[15] Lee, S., Choi, S. U. S., Li, S., and Eastman, J. A. Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 121, 280-289 (1999)
[16] Masuda, H., Ebata, A., Teramae, K., and Hishinuma, N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersions of—Al2O3, SiO2, and TiO2 ultrafine particles) (in Japanese). Netsu Bussei, 4, 227-233 (1993)
[17] Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., and Thompson, L. J. Anomalously increase effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 78(6), 718-720 (2001)
[18] Xuan, Y. and Li, Q. Heat transfer enhancement of nanofluids. International Journal of Heat and Fluid Flow, 21, 58-64 (2000)
[19] Pak, B. C. and Cho, Y. I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer, 11(2), 151-170 (1998)
[20] Wang, X., Xu, X., and Choi, S. U. S. Thermal conductivity of nanoparticles-fluid mixture. Journal of Thermophysics and Heat Transfer, 13(4), 474-480 (1999)
[21] Williams, W., Buongiorno, J., and Hu, L. W. Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes. ASME Journal of Heat Transfer, 130(1), 42412-42419 (2008)
[22] Xuan, Y. and Li, Q. Investigation on convective heat transfer and flow features of nanofluids. Journal of Heat Transfer, 125(1), 151-155 (2003)
[23] Heris, S. Z., Etemad, S. G., and Esfahany, M. N. Experimental investigation of Oxide nanofluids laminar flow convective heat transfer. International Communications in Heat and Mass Transfer, 33, 529-535 (2006)
[24] Heris, S. Z., Esfahany, M. N., and Etemad, S. G. Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. International Journal of Heat and Fluid Flow, 28, 203-210 (2007)
[25] Demir, H., Dalkilic, A. S., Kürekci, N. A., Duangthongsuk, W., and Wongwise, S. Numerical investigation on the single phase forced convection heat transfer characteristics of TiO2 nanofluids in a doubletube counter flow heat exchanger. International Communications in Heat and Mass Transfer, 38, 218-228 (2011)
[26] Ahmed, M. A., Shuaib, N. H., Yusoff, M. Z., and Al-Falahi, A. H. Numerical investigations of flow and heat transfer enhancement in a corrugated channel using nanofluid. International Communications in Heat and Mass Transfer, 38, 1368-1375 (2011)
[27] Santra, A. K., Sen, S., and Chakraborty, N. Study of heat transfer due to laminar flow of copperwater nanofluid through two isothermally heated parallel plates. International Journal of Thermal Science, 48, 391-400 (2009)
[28] Heidary, H. and Kermani, M. J. Effect of nano-particles on forced convection in sinusoidal-wall channel. International Communications in Heat and Mass Transfer, 37, 1520-1527 (2010)
[29] Mirmasoumi, S. and Behzadmehr, A. Numerical study of laminar mixed convection of a nanofluid in a horizontal tube using two-phase mixture model. Applied Thermal Engineering, 28, 717-727 (2008)
[30] Behzadmehr, A., Avval, M. S., and Galanis, N. Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach. International Journal of Heat and Fluid Flow, 28, 211-219 (2007)
[31] Akbari, M., Galanis, N., and Behzadmehr, A. Comparative analysis of single and two-phase models for CFD studies of nanofluid. International Journal of Thermal Sciences and Heat Transfer, 50, 1343-1354 (2011)
[32] Lotfi, R., Saboohi, Y., and Rashidi, A. M. Numerical study of forced convective heat transfer of nanofluids: comparison of different approaches. International Communications in Heat and Mass Transfer, 37, 74-78 (2010)
[33] Buongiorno, J. Convective transport in nanofluid. Journal of Heat Transfer, 128, 240-250 (2006)
[34] Rashidi, M. M., Abelman, S., and Freidoonimehr, N. Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. International Journal of Heat and Mass Transfer, 62, 515-525 (2013)
[35] Rashidi, M. M. and Erfani, E. The modified differential transform method for investigating nano boundary-layers over stretching surfaces. International Journal of Numerical Methods for Heat & Fluid Flow, 21, 864-883 (2011)
[36] Rashidi, M. M., Freidoonimehr, N., Hosseini, A., Anwar Bég, O., and Hung, T. K. Homotopy simulation of nanofluid dynamics from a non-linearly stretching isothermal permeable sheet with transpiration. Meccanica, 49, 469-482 (2014)
[37] Durst, F., Ray, S., Unsal, B., and Bayoumi, O. A. The development lengths of laminar pipe and channel flows. ASME Journal of Fluid Engineering, 127, 1154-1160 (2005)
[38] Khanafer, K. and Vafai, K. A critical synthesis of thermophysical characteristics of nanofluids. International Journal of Heat and Mass Transfer, 54, 4410-4428 (2011)
[39] Khanafer, K., Vafai, K., and Lightstone, M. Buoyancy-driven heat transfer enhancement in a two dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer, 46, 3639-3653 (2003)
[40] Maïgaa, S. B., Palma, S. J., and Nguyena, C. T. Heat transfer enhancement by using nanofluids in forced convection flows. International Journal of Heat and Fluid Flow, 26, 530-546 (2005)
[41] Yu, W. and Choi, S. U. S. The role of interfacial layers in the enhanced thermal of nanofluids: a renovated Maxwell mode. Journal of Nanoparticle Research, 5(1-2), 167-171 (2003)
[42] Manninen, M., Taivassalo, V., and Kallio, S. On the Mixture Model for Multiphase Flow, VTT Publications, Tekniikantie (1996)
[43] Schiller, L. and Naumann, A. A drag coefficient correlation. Zeitschrift Vereines Deutscher Ingenieure, 77, 318-325 (1935)
[44] Drew, D. A. and Lahey, R. T. Particulate Two-phase Flow, Butterworth-Heinemann, Boston (1993)
[45] Ranz, W. E. and Marshall, W. R. Evaporation from drops. Chemical Engineering Progress, 48, 141-146 (1952)
[46] Patankar, S. V. Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, Taylor and Francis Group, New York (1990)
[47] Haghshenas Fard, M., Esfahany, M. N., and Talaie, M. R. Numerical study of convective heat transfer of nanofluids in a circular tube two-phase model versus single-phase model. International Communications in Heat and Mass Transfer, 37, 91-97 (2010)
[48] Kalteh, M., Abbassi, A., Saffar-Aval, M., and Harting, J. Eulerian-Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel. International Journal of Heat and Fluid Flow, 32, 107-116 (2011) |