[1] Dimarogonas, A. D. and Gomez-Mancilla, J. C. Flow-excited turbine rotor instability. International Journal of Rotating Machinery, 1(1), 37-51 (1994)
[2] Marquette, O. R., Childs, D. W., and Andres, L. S. Eccentricity effects on the rotordynamic coefficients of plain annular seals theory versus experiment. ASME Journal of Tribology, 119(3), 443-447 (1997)
[3] Klaus, K. Dynamic coefficients of stepped labyrinth gas seals. Journal of Engineering for Gas Turbines and Power, 122(3), 473-477 (2000)
[4] Dietzed, F. J. and Nordmann, R. Calculating coefficients of seals by finite-difference techniques. ASME Journal of Tribology, 109(3), 388-394 (1987)
[5] Toshio, H., Guo, Z. L., and Gordon, K. R. Application of fluid dynamics analysis for rotating machinery-part : labyrinth seal analysis. Journal of Engineering for Gas Turbine and Power, 127(4), 820-826 (2005)
[6] Alford, J. S. Protecting turbomachinery from self-excited rotor whirl. ASME Journal of Engineering for Power, 87(4), 333-344 (1965)
[7] He, L. D. and Xia, S. B. Review on aerodynamic excitation and its elimination method in the rotor seal system (in Chinese). Journal of Vibration Engineering, 12(1), 64-72 (1999)
[8] Muszynska, A. Whirl and whip rotor-bearing stability problems. Journal of Sound and Vibration, 110(3), 443-462 (1986)
[9] Ding, Q., Cooper, J. E., and Leung, A. Y. T. Hopf bifurcation analysis of a rotor-seal system. Journal of Sound and Vibration, 252(5), 817-833 (2002)
[10] Liu, X. F. and Lu, S. Y. A study of methods used for three-dimensional CFD (computational fluid dynamics) numerical analysis of dynamic characteristics of rotors with labyrinth seals (in Chinese). Journal of Engineering for Thermal Energy and Power, 21(6), 635-639 (2006)
[11] Childs, D. W. Dynamic analysis of turbulent annular seals based on Hirs lubrication equation. Journal of Lubrication Technology, 105(3), 429-436 (1983)
[12] Golubistky, M. and Schaeffer, D. G. Singularities and Groups in Bifurcation Theory, Springer-Verlag, New York (1985) |