[1] Contento, G. Numerical wave tank computations of nonlinear motions of two-dimensional arbitrarilyshaped free floating bodies. Ocean Engineering, 27, 531-556 (2000)
[2] Grilli, S. T., Vogelmenn, S., and Watts, P. Development of a 3D numerical wave tank for modelingtsunami generation by underwater landslides. Engineering Analysis with Boundary Elements, 26,301-313 (2002)
[3] Fochesato, C., Grilli, S., and Dias, F. Numerical modeling of extreme rogue waves generated bydirectional energy focusing. Wave Motion, 44, 395-416 (2007)
[4] Ducrozet, G., Bonnefoy, F., Le Touzé, D., and Ferrant, P. A modified high-order spectral methodfor wavemaker modeling in a numerical wave tank. European Journal of Mechanics B/Fluids, 34,19-34 (2012)
[5] Park, J. C., Kim, M. H., Miyata, H., and Chun, H. H. Fully nonlinear numerical wave tank (NWT)simulations and wave run-up prediction around 3D structures. Ocean Engineering, 30, 1969-1996(2003)
[6] Li, Y. and Lin, M. Regular and irregular wave impacts on floating body. Ocean Engineering, 42,93-101 (2012)
[7] Rudman, M. Volume-tracking methods for interfacial flow calculations. International Journal forNumerical Methods in Fluids, 24, 671-691 (1997)
[8] Troch, P. and de Rouck, J. An active wave generating-absorbing boundary condition for VOFtype numerical model. Coastal Engineering, 38, 223-247 (1999)
[9] Choi, J. W. and Yoon, S. B. Numerical simulation using momentum source wave-maker appliedRANS equation model. Coastal Engineering, 56, 1043-1060 (2009)
[10] Zhao, X. Z., Hu, C. H., and Sun, Z. C. Numerical simulation of extreme wave generation usingVOF method. Journal of Hydrodynamics, 22, 466-477 (2010)
[11] Schäffer, H. A. and Steenberg, C. M. Second-order wavemaker theory for multidirectional waves.Ocean Engineering, 30, 1203-1231 (2003)
[12] Teng, B. and Ning, D. Z. A simplified model for extreme-wave kinematics in deep sea. Journal ofMarine Science and Application, 8, 27-32 (2009)
[13] Wei, G., Le, J. C., and Dai, S. Q. Surface effects of internal wave generated by a moving sourcein a two-layer fluid of finite depth. Applied Mathematics and Mechanics (English Edition), 24(9),1025-1040 (2003) DOI 10.1007/BF02437635
[14] Lara, J. L., Garcia, N., and Losada, I. J. RANS modelling applied to random wave interactionwith submerged permeable structure. Coastal Engineering, 113, 396-417 (2006)
[15] Lin, P. and Karunarathna, S. A. S. Numerical study of solitary wave interaction with porousbreakwaters. Journal of Waterway, Port, Coastal and Ocean Engineering, 133(5), 352-363 (2007)
[16] Shin, S., Bae, S. Y., Kim, I. C., Kim, Y. J., and Yoo, H. K. Simulation of free surface flowsusing the flux-difference splitting scheme on the hybrid Cartesian/immersed boundary method.International Journal for Numerical Methods in Fluids, 68, 360-376 (2012)
[17] Rafei, R. Numerical Solution of Incompressible 3D Turbulent Flow in a Spiral Channel, M. Sc.dissertation, Amirkabir University of Technology (2004)
[18] Li, C. W. and Zang, Y. F. Simulation of free surface recirculating flows in semi-enclosed waterbodies by a k-w model. Applied Mathematical Modeling, 22, 153-164 (1998)
[19] Gao, H., Gu, H. Y., and Guo, L. J. Numerical study of stratified oil-water two-phase turbulentflow in a horizontal tube. International Journal of Heat and Mass Transfer, 46, 749-754 (2003)
[20] Ren, B. and Wang, Y. Numerical simulation of random wave slamming on structures in the splashzone. Ocean Engineering, 31, 547-560 (2004)
[21] Shen, Y. M., Ng, C. O., and Zheng, Y. H. Simulation of wave propagation over a submergedbar using the VOF method with a two-equation k-ε turbulence modeling. Ocean Engineering, 31,87-95 (2004)
[22] Mirbagheri, S. M. H., Dadashzadeh, M., Serajzadeh, S., Taheri, A. K., and Davami, P. Modelingthe effect of mould wall roughness on the melt flow simulation in casting process. AppliedMathematical Modeling, 28, 933-956 (2004)
[23] Geuyffier, D., Li, J., Nadim, A., Scardovelli, R., and Zaleski, S. Volume-of-fluid interface trackingwith smoothed surface stress methods for three-dimensional flows. Journal of ComputationalPhysics, 152, 423-456 (1999)
[24] Harvie, D. J. E. and Fletcher, D. F. A new volume of fluid advection algorithm: the defineddonating region scheme. International Journal for Numerical Methods in Fluids, 35, 151-172(2001)
[25] Ketabdari, M. J., Nobari, M. R. H., and Moradi-Larmaei, M. Simulation of waves group propagationand breaking in coastal zone using a Navier-Stokes solver with an improved VOF free surfacetreatment. Applied Ocean Research, 30, 130-143 (2008)
[26] Hur, D. S. and Mizutani, M. Numerical estimation of the wave forces acting on a three-dimensionalbody on submerged breakwater. Coastal Engineering, 47, 329-345 (2003)
[27] Duff, E. S. Fluid Flow Aspects of Solidification Modeling, Simulation of Low Pressure Die Casting,Ph. D. dissertation, University of Queenland (1999)
[28] Ghia, U., Ghia, K. N., and Shin, C. T. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 48, 387-411 (1982)
[29] Scardovelli, R. and Zaleski, S. Interface reconstruction with least-square fit and split Eulerian-Lagrangian advection. International Journal of Numerical Methods in Fluids, 41, 251-274 (2003)
[30] Martin, J. C. and Moyce, W. J. An experimental study of the collapse of liquid columns on a rigidhorizontal plane. Philosophical Transaction of the Royal Society of London, 244, 312-324 (1982)
[31] Boussinesq, M. J. Théorie de l’intumescence liquide, appelée onde solitaire ou de translation, sepropageant dans un canal rectangulaire. Comptes Rendus de l’Académie des Scinces, 72, 755-759(1871)
[32] Rayleigh, L. On waves. Philosophical Magazine, 1, 257-279 (1876)
[33] Clamond, D. and Germain, J. P. Interaction between a Stokes wave packet and a solitary wave.European Journal of Mechanics B/Fluids, 18, 67-91 (1999)
[34] Temperville, A. Contribution a l’étude des Ondes de Gravité en Eau Peu Profonde, Thèse d’Etat,Université Joseph Fourier (1985) |