[1] Pakdemirli, H. R., Öz, M., and Boyaci, H. Non-linear vibrations and stability of an axially movingbeam with time-dependent velocity. International Journal of Non-Linear Mechanics, 36(1), 107-115 (2001)
[2] Yang, X. D. and Chen, L. Q. Dynamic stability of axially moving viscoelastic beams with pulsatingspeed. Appl. Math. Mech. -Engl. Ed., 26(8), 989-995 (2005) DOI 10.1007/BF02466411
[3] Lee, U. and Oh, H. Dynamics of an axially moving viscoelastic beam subject to axial tension.International Journal of Solids and Structures, 42(8), 2381-2398 (2005)
[4] Liu, K. F. and Deng, L. Y. Identification of pseudo-natural frequencies of an axially movingcantilever beam using a subspace-based algorithm. Mechanical Systems and Signal Processing,20(1), 94-113 (2006)
[5] Chen, L. Q. and Yang, X. D. Nonlinear free transverse vibration of an axially moving beam:comparison of two models. Journal of Sound and Vibration, 299(1-2), 348-354 (2007)
[6] Jakši?, N. Numerical algorithm for natural frequencies computation of an axially moving beammodel. Meccanica, 44(6), 687-695 (2009)
[7] Ponomareva, S. V. and van Horssen, W. T. On the transversal vibrations of an axially movingcontinuum with a time-varying velocity: transient from string to beam behavior. Journal of Soundand Vibration, 325(4-5), 959-973 (2009)
[8] Chang, J. R., Lin, W. J., Huang, C. J., and Choi, S. T. Vibration and stability of an axiallymoving rayleigh beam. Applied Mathematical Modelling, 34(6), 1482-1497 (2010)
[9] Huang, J. L., Su, R. K. L., Li, W. H., and Chen, S. H. Stability and bifurcation of an axiallymoving beam tuned to three-to-one internal resonances. Journal of Sound and Vibration, 330(3),471-485 (2011)
[10] Wang, B. Asymptotic analysis on weakly forced vibration of axially moving viscoelastic beamconstituted by standard linear solid model. Appl. Math. Mech. -Engl. Ed., 33(6), 817-828 (2012)DOI 10.1007/s10483-012-1588-8
[11] Marynowski, K. Dynamic analysis of an axially moving sandwich beam with viscoelastic core.Composite Structures, 94(9), 2931-2936 (2012)
[12] Lee, U., Kim, J., and Oh, H. Spectral analysis for the transverse vibration of an axially movingTimoshenko beam. Journal of Sound and Vibration, 271(3-5), 685-703 (2004)
[13] Cojocaru, E. C., Irschik, H., and Schlacher, K. Concentrations of pressure between an elasticallysupported beam and a moving Timoshenko-beam. Journal of Engineering Mechanics-ASCE,129(9), 1076-1082 (2003)
[14] Yang, X. D., Tang, Y. Q., Chen, L. Q., and Lim, C. W. Dynamic stability of axially acceleratingTimoshenko beam: averaging method. European Journal of Mechanics A-Solids, 29(1), 81-90(2010)
[15] Tang, Y. Q., Chen, L. Q., and Yang, X. D. Natural frequencies, modes and critical speeds ofaxially moving Timoshenko beams with different boundary conditions. International Journal ofMechanical Sciences, 50(10-11), 1448-1458 (2008)
[16] Tang, Y. Q., Chen, L. Q., and Yang, X. D. Parametric resonance of axially moving Timoshenkobeams with time-dependent speed. Nonlinear Dynamics, 58(4), 715-724 (2009)
[17] Tang, Y. Q., Chen, L. Q., and Yang, X. D. Nonlinear vibrations of axially moving Timoshenkobeams under weak and strong external excitations. Journal of Sound and Vibration, 320(4-5),1078-1099 (2009)
[18] Li, B., Tang, Y. Q., and Chen, L. Q. Nonlinear free transverse vibrations of axially movingTimoshenko beams with two free ends. Science China-Technological Sciences, 54(8), 1966-1976(2011)
[19] Tang, Y. Q., Chen, L. Q., Zhang, H. J., and Yang, S. P. Stability of axially accelerating viscoelasticTimoshenko beams: recognition of longitudinally varying tensions. Mechanism and MachineTheory, 62, 31-50 (2013)
[20] Ghayesh, M. H. and Balar, S. Non-linear parametric vibration and stability analysis for twodynamic models of axially moving Timoshenko beams. Applied Mathematical Modelling, 34(10),2850-2859 (2010)
[21] Ghayesh, M. H. and Amabili, M. Three-dimensional nonlinear planar dynamics of an axiallymoving Timoshenko beam. Archive of Applied Mechanics, 83(4), 591-604 (2013)
[22] Cotta, R. M. Integral Transforms in Computational Heat and Fluid Flow, CRC Press, Boca Raton(1993)
[23] Cotta, R. M. and Mikhailov, M. D. Heat Conduction—Lumped Analysis, Integral Transforms,Symbolic Computation, John Wiley & Sons, Chichester, England (1997)
[24] Cotta, R. M. The Integral Transform Method in Thermal and Fluids Science and Engineering,Begell House, New York (1998)
[25] An, C., Gu, J. J., and Su, J. Integral transform solution of bending problem of clamped orthotropicrectangular plates. International Conference on Mathematics and Computational Methods Appliedto Nuclear Science and Engineering, Rio de Janeiro, Brazil (2011)
[26] Ma, J. K., Su, J., Lu, C. H., and Li, J. M. Integral transform solution of the transverse vibration ofan axial moving string. Journal of Vibration, Measurement & Diagnosis, 26(117), 104-107 (2006)
[27] An, C. and Su, J. Dynamic response of clamped axially moving beams: integral transform solution.Applied Mathematics and Computation, 218(2), 249-259 (2011)
[28] Gu, J. J., An, C., Duan, M. L., Levi, C., and Su, J. Integral transform solutions of dynamicresponse of a clamped-clamped pipe conveying fluid. Nuclear Engineering and Design, 254, 237-245 (2013)
[29] Gu, J. J., An, C., Levi, C., and Su, J. Prediction of vortex-induced vibration of long flexiblecylinders modeled by a coupled nonlinear oscillator: integral transform solution. Journal of Hydrodynamics,24(6), 888-898 (2012)
[30] Wolfram, S. The Mathematica Book, 5th ed., Wolfram Media/Cambridge University Press, Champaign(2003) |