[1] Andreianov, B., Boyer, F., and Hubert, F. Finite volume schemes for the p-Laplacian on Cartesian meshes. Esaim Mathematical Modelling and Numerical Analysis, 38, 27-28(2004)
[2] Frisch, M., Matarrese, S., Mohayaee, R., and Sobolevskii, A. A reconstruction of the initial conditions of the universe by optimal mass transportation. nature, 417, 260-262(2002)
[3] Hoskins, B. J. The geostrophic momentum approximation and the semigeostrophic equations. Journal of Atmospheric Sciences, 32, 233-242(1975)
[4] Villani, C. Optimal transport, old and new. Grundlehren der Mathematischen Wissenschaften, Springer, Berlin (2009)
[5] Feng, X. and Neilan, M. A modified characteristic finite element method for a fully nonlinear formulation of the semigeostrophic flow equations. Journal on Numerical Analysis, 47, 2952-2981(2009)
[6] He, J. H. Some asymptotic methods for strongly nonlinear equations. International Journal of Modern Physics B, 13, 1141-1199(2006)
[7] Urbano, J. M. A free boundary problem with convection for the p-Laplacian. Rendiconti LinceiMatematica e Applicazioni, 17, 1-19(1997)
[8] Acker, A. and Meyer, R. A free boundary problem for the p-Laplacian:uniqueness, convexity, and successive approximation of solutions. Electronic Journal of Differential Equations, 1995, 1-19(1995)
[9] Cuccu, F., Emamizadeh, B., and Porru, G. Nonlinear elastic membranes involving the p-Laplacian operator. Electronic Journal of Differential Equations, 2006, 285-296(2006)
[10] Huang, Y. Q., Li, R., and Liu, W. B. Preconditioned descent algorithms for p-Laplacian. Journal of Scientific Computing, 32, 343-371(2007)
[11] Chow, S. S. Finite element error estimates for non-linear elliptic equations of monotone type. Numerische Mathematik, 54, 373-393(1989)
[12] Barrett, J. W. and Liu, W. B. Finite element approximation of the p-Laplacian. Mathematics of Computation, 61, 523-537(1993)
[13] Ainsworth, M. and Kay, D. Approximation theory for the hp-finite element method and application to the nonlinear Laplacian. Applied Numerical Mathematics, 34, 329-344(2000)
[14] Zhou, G. M., Huang, Y. Q., and Feng, C. S. Preconditioned hybrid conjugate gradient algorithm for p-Laplacian. International Journal of Numerical Analysis and Modeling, 2, 123-130(2005)
[15] Oberman, A. M. Finite difference methods for the infinity Laplace and p-Laplace equations. Journal of Computational and Applied Mathematics, 254, 65-80(2013)
[16] Lefton, L. and Wei, D. Numerical approximation of the first eigenpair of the p-Laplacian using finite elements and the penalty method. Numerical Functional Analysis and Optimization, 18, 389-399(1997)
[17] Pezzo, L. M., Lombardi, A. L., and Martínez, S. Interior penalty discontinuous Galerkin FEM for the p(x)-Laplacian. Journal on Numerical Analysis, 50, 2497-2521(2012)
[18] He, Y. and Han, B. A wavelet finite-difference method for numerical simulation of wave propagation in fluid-saturated porous media. Applied Mathematics and Mechanics (English Edition), 29(11), 1495-1504(2008) DOI 10.1007/s10483-008-1110-y
[19] Ding, L., Han, B., and Liu, J. Q. A wavelet multiscale method for inversion of Maxwell equations. Applied Mathematics and Mechanics (English Edition), 30(8), 1035-1044(2009) DOI 10.1007/s10483-009-0810-1
[20] Xiang, J. W., Chen, X. F., and Li, X. K. Numerical solution of Poisson equation with wavelet bases of Hermite cubic splines on the interval. Applied Mathematics and Mechanics (English Edition), 30(10), 1325-1334(2009) DOI 10.1007/s10483-009-1012-x
[21] Bertoluzza, S. and Naldi, G. A wavelet collocation method for the numerical solution of partial differential equations. Applied and Computational Harmonic Analysis, 3, 1-9(1996)
[22] Lazaar, S., Ponenti, P. J., Liandrat, J., and Tchamitchian, P. Wavelet algorithms for numerical resolution of partial differential equations. Computer Methods in Applied Mechanics and Engineering, 116, 309-314(1994)
[23] Ren, X. and Xanthis, L. S. A dynamically adaptive wavelet method of arbitrary lines for nonlinear evolutionary problems capturing steep moving fronts. Computer Methods in Applied Mechanics and Engineering, 195, 4962-4970(2006)
[24] Vasilyev, O. V. and Kevlahan, N. R. An adaptive multilevel wavelet collocation method for elliptic problems. Journal of Computational Physics, 206, 412-431(2005)
[25] Wang, J. Z. Generalized Theory and Arithmetic of Orthogonal Wavelets and Applications to Researches of Mechanics Including Piezoelectric Smart Structures, Ph. D. dissertation, Lanzhou University, Lanzhou (2001)
[26] Wang, X. M. A new wavelet method for solving a class of nonlinear Volterra-Fredholm integral equations. Abstract and Applied Analysis, 2014, 1-6(2014)
[27] Liu, X. J., Zhou, Y. H., Wang, X. M., and Wang, J. Z. A wavelet method for solving a class of nonlinear boundary value problems. Communications in Nonlinear Science and Numerical Simulation, 18, 1939-1948(2013)
[28] Liu, X. J., Wang, J. Z., Wang, X. M., and Zhou, Y. H. Exact solutions of multi-term fractional diffusion-wave equations with Robin type boundary conditions. Applied Mathematics and Mechanics (English Edition), 35(1), 49-62(2014) DOI 10.1007/s10483-014-1771-6
[29] Liu, X. J., Wang, J. Z., and Zhou, Y. H. Wavelet solution of a class of two-dimensional nonlinear boundary value problems. Computer Modeling in Engineering and Sciences, 92, 493-505(2013)
[30] Wang, J. Z., Wang, X. M., and Zhou, Y. H. A wavelet approach for active-passive vibration control of laminated plates. Acta Mechanica Sinica, 28, 520-531(2012)
[31] Wang, X. M., Liu, X. J., Wang, J. Z., and Zhou, Y. H. A wavelet method for bending of circular plate with large deflection. Acta Mechanica Solida Sinica, 28, 83-90(2015)
[32] Zhang, L., Wang, J. Z., and Zhou, Y. H. Wavelet solution for large deflection bending problems of thin rectangular plates. Archive of Applied Mechanics, 85, 355-365(2015)
[33] Bermejo, R. and Infante, J. A multigrid algorithm for the p-Laplacian. SIAM Journal on Scientific Computing, 21, 1774-1789(2000)
[34] Fiedler, M. A note on the Hadamard product of matrices. Linear Algebra and Its Applications, 49, 233-235(1983) |