[1] Wright, A. D., Smith, C. E., Thresher, R. W., andWang, J. L. C. Vibration modes of centrifugally stiffened beams. Journal of Applied Mechanics, 49, 197-202(1982)
[2] Kane, T. R., Ryan, R. R., and Banerjee, A. K. Dynamics of a cantilever beam attached to a moving base. Journal of Guidance Control and Dynamics, 10, 139-151(1987)
[3] Naguleswaran, S. Lateral vibration of a centrifugally tensioned uniform Euler-Bernoulli beam. Journal of Sound and Vibration, 176, 613-624(1994)
[4] Huang, Y., Deng, Z., and Yao, L. Dynamic analysis of a rotating rigid-flexible coupled smart structurewith large deformations. Applied Mathematics and Mechanics (English Edition), 28, 1349-1360(2007) DOI 10.1007/s10483-007-1008-z
[5] Surace, G., Anghel, V., and Mares, C. Coupled bending-bending-torsion vibration analysis of rotating pretwisted blades:an integral formulation and numerical examples. Journal of Sound and Vibration, 206, 473-486(1997)
[6] Liu, K. C., Friend, J., and Yeo, L. The axial-torsional vibration of pretwisted beams. Journal of Sound and Vibration, 321, 115-136(2009)
[7] Ghafarian, M. and Ariaei, A. Free vibration analysis of a system of elastically interconnected rotating tapered Timoshenko beams using differential transform method. International Journal of Mechanical Sciences, 107, 93-109(2016)
[8] Huo, Y. andWang, Z. Dynamic analysis of a rotating double-tapered cantilever Timoshenko beam. Archive of Applied Mechanics, 86, 1147-1161(2015)
[9] Huang, J. L. and Zhu, W. D. Nonlinear dynamics of a high-dimensional model of a rotating Euler-Bernoulli beam under the gravity load. Journal of Applied Mechanics, 81, 101007(2014)
[10] Kim, H., Yoo, H., and Chung, J. Dynamic model for free vibration and response analysis of rotating beams. Journal of Sound and Vibration, 332, 5917-5928(2013)
[11] Sinha, S. K. and Turner, K. E. Natural frequencies of a pre-twisted blade in a centrifugal force field. Journal of Sound and Vibration, 330, 2655-2681(2011)
[12] Banerjee, J. R., Papkov, S. O., Liu, X., and Kennedy, D. Dynamic stiffness matrix of a rectangular plate for the general case. Journal of Sound and Vibration, 342, 177-199(2015)
[13] Banerjee, J. R. and Kennedy, D. Dynamic stiffness method for inplane free vibration of rotating beams including Coriolis effects. Journal of Sound and Vibration, 333, 7299-7312(2014)
[14] Banerjee, J. R. Dynamic stiffness formulation and free vibration analysis of centrifugally stiffened Timoshenko beams. Journal of Sound and Vibration, 247, 97-115(2001)
[15] Banerjee, J. R. Free vibration of centrifugally stiffened uniform and tapered beams using the dynamic stiffness method. Journal of Sound and Vibration, 233, 857-875(2000)
[16] Chung, J. and Yoo, H. H. Dynamic analysis of a rotating cantilever beam by using the finite element method. Journal of Sound and Vibration, 249, 147-164(2002)
[17] Hashemi, S. M. and Richard, M. J. Natural frequencies of botating uniform beams with coriolis effects. Journal of Vibration and Acoustics, 123, 444(2001)
[18] Du, H., Lim, M. K., and Liew, K.M. A power-series solution for vibration of a rotating Timoshenko beam. Journal of Sound and Vibration, 175, 505-523(1994) |