[1] ZHANG, L. and ZU, J. W. Nonlinear vibration of parametrically excited moving belts, part I:dynamic response. ASME Journal of Applied Mechanics, 66, 396-402(1999) [2] DING, H., JI, J. C., and CHEN, L. Q. Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics. Mechanical Systems and Signal Processing, 121, 675-688(2019) [3] SONG, M. T., YANG, J., and KITIPORNCHAI, S. Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Composites Part B:Engineering, 134, 106-113(2018) [4] WANG, Y. Q. and ZU, J. W. Analytical analysis for vibration of longitudinally moving plate submerged in infinite liquid domain. Applied Mathematics and Mechanics (English Edition), 38, 625-646(2017) https://doi.org/10.1007/s10483-017-2192-9 [5] YANG, T. Z., Yang, X. D., LI, Y. H., and FANG, B. Passive and adaptive vibration suppression of pipes conveying fluid with variable velocity. Journal of Vibration and Control, 20(9), 1293-1300(2014) [6] MARYNOWSIK, K. Vibration analysis of an axially moving sandwich beam with multiscale composite facings in thermal environment. International Journal of Mechanical Sciences, 146, 116-124(2018) [7] TANG, Y. Q., ZHANG, Y. X., and YANG, X. D. On paramentric instability boundaries of axially moving beams with internal resonance. Acta Mechanica Solida Sinca, 31(4), 470-483(2018) [8] ZHANG, Y. W., HOU, S., XU, K. F., YANG, T. Z., and CHEN, L. Q. Forced vibration control of an axially moving beam with an attached nonlinear energy sink. Acta Mechanic Solida Sinca, 30(6), 674-682(2017) [9] MA, G. L., XU, M. L., ZHANG, S. W., ZHANG, Y. H., and LIU, X. M. Active vibration control of an axially moving cantilever structure using PZT actuator. Journal of Aerospace Engineering, 31(5), 04018049(2018) [10] MARYNOWSKI, K. and KAPITANIAK, T. Dynamics of axially moving continua. International Journal of Mechanical Sciences, 81, 26-41(2014) [11] LEE, U., KIM, J. H., and OH, H. M. Spectral analysis for the transverse vibration of an axially moving Timoshenko beam. Journal of Sound and Vibration, 271, 685-703(2004) [12] TANG, Y. Q., CHEN, L. Q., and YANG, X. D. Nonlinear vibrations of axially moving Timoshenko beams under weak and strong external excitations. Journal of Sound and Vibration, 320, 1078-1099(2009) [13] GHAYESH, M. H. and AMABILI, M. Nonlinear vibrations and stability of an axially moving Timoshenko beam with an intermediate spring support. Mechanism and Machine Theory, 67, 1-16(2013) [14] AN, C. and SU, J. Dynamic response of axially moving Timoshenko beams:integral transform solution. Applied Mathematics and Mechanics (English Edition), 35, 1421-1436(2014) https://doi.org/10.1007/s10483-014-1879-7 [15] YAN, Q. Y., DING, H., and CHEN, L. Q. Nonlinear dynamics of axially moving viscoelastic Timoshenko beam under parametric and external excitations. Applied Mathematics and Mechanics (English Edition), 36, 971-984(2015) https://doi.org/10.1007/s10483-015-1966-7 [16] YESILCE, Y. Determination of natural frequencies and mode shapes of axially moving Timoshenko beams with different boundary conditions using differential transform method. Advances in Vibration Engineering, 12, 89-108(2013) [17] LI, B., TANG, Y. Q., and CHEN, L. Q. Nonlinear free transverse vibrations of axially moving Timoshenko beams with two free ends. Science China-Technological Sciences, 54, 1966-1976(2011) [18] DING, H. and CHEN, L. Q. Stability of axially accelerating viscoelastic beams multi-scale analysis with numerical confirmations. European Journal of Mechanics-A/Solids, 27, 1108-1120(2008) [19] BANERJEE, J. R. Dynamic stiffness formulation and free vibration analysis of centrifugally stiffened Timoshenko beams. Journal of Sound and Vibration, 247, 97-115(2001) [20] TANG, Y. Q., ZHANG, D. B., and GAO, J. M. Vibration characteristic analysis and numerical confirmation of an axially moving plate with viscous damping. Journal of Vibration and Control, 23(5), 731-743(2017) [21] VINOD, K. G., GOPALAKRISHNAN, S., and GANGULI, R. Free vibration and wave propagation analysis of uniform and tapered rotating beams using spectrally formulated finite elements. International Journal of Solids and Structures, 44, 5875-5893(2007) [22] PAGANI, A., BOSCOLO, M., BANERJEE, J. R., and CARRERA, E. Exact dynamic stiffness elements based on one-dimensional higher-order theories for free vibration analysis of solid and thin-walled structures. Journal of Sound and Vibration, 332, 6104-6127(2013) [23] BANERJEE, J. R. and KENNEDY, D. Dynamic stiffness method for inplane free vibration of rotating beams including Coriolis effects. Journal of Sound and Vibration, 333, 7299-7312(2014) [24] HONG, M., PARK, I., and LEE, U. Dynamics and waves characteristics of the FGM axial bars by using spectral element method. Composite Structures, 107, 585-593(2014) [25] LEUNG, A. Y. T. and ZHOU, W. E. Dynamic stiffness analysis of nonuniform Timoshenko beams. Journal of Sound and Vibration, 181, 447-456(1995) [26] LI, J., CHEN, Y., and HUA, H. X. Exact dynamic stiffness matrix of a Timoshenko three-beam system. International Journal of Mechanical Sciences, 50, 1023-1034(2008) [27] ARBOLEDA-MONSALVE, L. G., ZAPATA-MEDINA, D. G., and ARISTIZABAL-OCHOA, J. D. Timoshenko beam-column with generalized end conditions on elastic foundation:dynamicstiffness matrix and load vector. Journal of Sound and Vibration, 310, 1057-1079(2008) [28] KIM, N. I. and LEE, J. Exact solutions for stability and free vibration of thin-walled Timoshenko laminated beams under variable forces. Archive of Applied Mechanics, 84, 1785-1809(2014) [29] HAO, D. and WEI, C. Dynamic characteristics analysis of bi-directional functionally graded Timoshenko beams. Composite Structures, 141, 253-263(2016) [30] BANERJEE, J. R. and GUNAWARDANA, W. D. Dynamic stiffness matrix development and free vibration analysis of a moving beam. Journal of Sound and Vibration, 303, 135-143(2007) [31] DING, H., DOWELL, E. H., and CHEN, L. Q. Transmissibility of bending vibration of an elastic beam. ASME Journal of Vibration and Acoustics, 140, 031007(2018) [32] CHEN, L. Q. and TANG, Y. Q. Combination and principal parametric resonances of axially accelerating viscoelastic beams:recognition of longitudinally varying tensions. Journal of Sound and Vibration, 330, 5598-5614(2011) [33] MOTE, C. D. A study of band saw vibration. Journal of Franklin Institute, 276, 430-444(1965) [34] ZHANG, H. J., MA, J., DING, H., and CHEN, L. Q. Vibration of axially moving beam supported by viscoelastic foundation. Applied Mathematics and Mechanics (English Edition), 38, 161-172(2017) https://doi.org/10.1007/s10483-017-2170-9 [35] DING, H. and CHEN, L. Q. Nonlinear vibration of a slightly curved beam with quasi-zero-stiffness isolators. Nonlinear Dynamics, 95, 2367-2382(2019) [36] DING, H., LI, Y., and CHEN, L. Q. Nonlinear vibration of a beam with asymmetric elastic supports. Nonlinear Dynamics, 95, 2543-2554(2019) [37] LI, Y. H., GAO, Q., JIAN, K. L., and YIN, X. G. Dynamic responses of viscoelastic axially moving belt. Applied Mathematics and Mechanics (English Edition), 24, 1348-1354(2003) https://doi.org/10.1007/BF02439659 [38] LI, X. Q., SONG, M. T., YANG, J., and KITIPORNCHAI, S. Primary and secondary resonances of functionally graded graphene platelet-reinforced nanocomposite beams. Nonlinear Dynamics, 95, 1807-1826(2019) |