[1] Feodosiev, V. I. Advanced Stress and Stability Analysis:Worked Examples, Springer-Verlag, Berlin/Heidelberg (2005) [2] Towhata, I. Geotechnical Earthquake Engineering, Springer-Verlag, Berlin/Heidelberg (2008) [3] Paidoussis, M. P. Fluid-structure interactions. Slender Structures and Axial Flow, Academic Press, San Diego/London (1998) [4] Bai, Y. Pipelines and Risers, Elsevier, Amsterdam (2003) [5] Bashurov, V. V., Vaganova, N. A., Kropotov, A. I., Pchelintsev, M. V., Skorkin, N. A., and Filimonov, M. Y. Nonlinear model of a pipeline in a gravity field with an ideal fluid moving through it. Journal of Applied Mechanics and Technical Physics, 53(1), 43-48(2012) [6] Liu, R., Wang, W. G., Yan, S. W., and Wu, X. L. Engineering measures for preventing upheaval buckling of buried submarine pipelines. Applied Mathematics and Mechanics (English Edition), 33(6), 781-796(2012) https://doi.org/10.1007/s10483-012-1586-6 [7] Liu, R., Liu, W. B., Wu, X. L., and Yan, S. W. Global lateral buckling analysis of idealized subsea pipelines. Journal of Central South University, 21(1), 416-427(2014) [8] Wang, B. and Zhou, J. Strain analysis of buried steel pipelines across strike-slip faults. Journal of Central South University of Technology, 18(5), 1654-1661(2011) [9] Kim, J. Harmonic axisymmetric thick shell element for static and vibration analyses. KSME International Journal, 18(10), 1747-1754(2004) [10] Rodrigues, M. R., Zouain, N., Borges, L., and de Souza, N. E. A. A continuum-based mixed axisymmetric shell element for limit and shakedown analysis. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 36(1), 153-172(2014) [11] Sun, J., Xu, X., Lim, C. W., and Tan, V. B. C. An energy conservative symplectic methodology for buckling of cylindrical shells under axial compression. Acta Mechanica, 224(8), 1579-1592(2013) [12] Zubov, L. M. Equations of nonlinear dynamics of elastic shells in cylindrical Eulerian coordinates. Doklady Physics, 61(5), 218-222(2016) [13] Rukavishnikov, V. A. and Tkachenko, O. P. Numerical and asymptotic solution of the equations of propagation of hydroelastic vibrations in a curved pipe. Journal of Applied Mechanics and Technical Physics, 41(6), 1102-1110(2000) [14] Rukavishnikov, V. A. and Tkachenko, O. P. Nonlinear equations of motion of an extensible underground pipeline:derivation and numerical modeling. Journal of Applied Mechanics and Technical Physics, 44(4), 571-576(2003) [15] Rukavishnikov, V. A. and Tkachenko, O. P. Effect of the pipe curvature on internal elastic wave propagation. Computational Mathematics and Mathematical Physics, 50(11), 1886-1894(2010) [16] Rukavishnikov, V. A. and Tkachenko, O. P. Numerical analysis of the mathematical model of hydroelastic oscillations in a curved pipeline. Mathematical Models and Computer Simulations, 3(4), 508-516(2011) [17] Rukavishnikov, V. A. and Tkachenko, O. P. Approximate solution to the nonlinear problem of an underground pipeline deformation. Journal of Applied and Industrial Mathematics, 6(1), 100-110(2012) [18] Sedov, L. I. A Course in Continuum Mechanics, Vol. 4, Translation from the Russian (ed. Radok, J. R. M.), Wolters-Noordhoff, Groningen (1971) [19] Sasic, R. and Sasic, S. A new approach to the velocity field investigation in case of the entry flow in curved pipes with circular cross section. Acta Mechanica, 140, 103-117(2000) [20] Novozhilov, V. V. and Radok J. R. M. Thin Shell Theory (Paperback, Softcover Reprint of the Original 1st ed. 1964), Springer-Verlag, Netherlands (2014) [21] Goto, S. I. Amplitude equations for a linear wave equation in a weakly curved pipe. Journal of Physics A:Mathematical and Theoretical, 42(44), 445205(2009) [22] Nikuradse, J. Laws of Flow in Rough Pipes, Technical Memorandum 1292, Translation of "Strömungsgesetze in Rauhen Rohren."\VDI-Forschungsheft 361. Beilage zu "Forschung auf dem Gebiete des Ingenieurwesens"\Ausgabe B Band 4, July/August 1933, NACA, Washington (1950) [23] Loitsyanskii, L. G. Mechanics of Liquids and Gases, Pergamon Press, Oxford/New York (1966) [24] Landau, L. D. and Lifshitz, E. M. Fluid Mechanics (Volume 6 of A Course of Theoretical Physics), Butterworth-Heinemann, Oxford (1987) [25] Havil, J. Gamma:Exploring Euler's Constant, Princeton University Press, Princeton (2003) [26] Widjaja, B. and Lee, S. H. H. Flow box test for viscosity of soil in plastic and viscous liquid states. Soils and Foundations, 53(1), 35-46(2013) [27] Gol' Denveizer, A. L., von Karman, T., and Dryden, H. L. Theory of Elastic Thin Shells:Solid and Structural Mechanics, Elsevier, New York (2014) [28] Popov, Y. P. and Samarskii, A. A. Difference Methods for Solving Problems Gas Dynamics (in Russian), Nauka, Moscow (1992) [29] Vlasov, V. Z. The General Principles of Construction of The Technical Theory of Shells (in Russian)/Vlasov, V. Z. Selected Works, Vol. 2, RAS, Mocsow, 467-503(1963) [30] Timoshenko, S. P. Strength and Vibrations of Structural Elements (in Russian), Nauka, Moskow, 284-291(1975) [31] Timoshenko, S. P. Strength of Materials, Part I:Elementary Theory and Problems, 3rd ed., D. Van Nostrand Company, Princeton (1955) [32] Athisakul, C., Monprapussorn, T., Pulngern, T., and Chucheepsakul, S. The effect of axial extensibility on three-dimensional behavior of tensioned pipes/risers transporting fluid. Proceedings of the Eighth ISOPE Pacific/Asia Offshore Mechanics Symposium, the International Society of Offshore and Polar Engineers, Bangkok, 97-104(2008) |