[1] POINCARÉ, J. H. Sur le problème des trois corps et leséquations de la dynamique. Divergence des séries de M. Lindstedt. Acta Mathematica, 13, 1-270(1890)
[2] LORENZ, E. N. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20, 130-141(1963)
[3] LORENZ, E. N. Computational chaos-a prelude to computational instability. Physica D, 15, 299-317(1989)
[4] LORENZ, E. N. Computational periodicity as observed in a simple system. Tellus A, 58, 549-559(2006)
[5] LI, J. P., ZENG, Q. C., and CHOU, J. F. Computational uncertainty principle in nonlinear ordinary differential equations (Ⅱ):theoretical analysis. Science in China (Series E), 44, 55-74(2001)
[6] TEIXEIRA, J., REYNOLDS, C., and JUDD, K. Time step sensitivity of nonlinear atmospheric models:numerical convergence, truncation error growth, and ensemble design. Journal of the Atmospheric Sciences, 64, 175-188(2007)
[7] QIN, S. J. and LIAO, S. J. Influence of round-off errors on the reliability of numerical simulations of chaotic dynamic systems. Journal of Applied Nonlinear Dynamics (accepted) (Preprint arXiv:1707.04720)
[8] YAO, L. and HUGHES, D. Comment on "computational periodicity as observed in a simple system" by Edward N. Lorenz (2006). Tellus A, 60, 803-805(2008)
[9] LORENZ, E. N. Reply to comment by L. S. Yao and D. Hughes. Tellus A, 60, 806-807(2008)
[10] ALBERS, T. and RADONS, G. Weak ergodicity breaking and aging of chaotic transport in Hamiltonian systems. Physical Review Letters, 113, 184101(2014)
[11] HUYNH, H. N., NGUYEN, T. P. T., and CHEW, L. Y. Numerical simulation and geometrical analysis on the onset of chaos in a system of two coupled pendulums. Communications in Nonlinear Science and Numerical Simulation, 18, 291-307(2013)
[12] LEE, M. and MOSER, R. D. Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200. Journal of Fluid Mechanics, 774, 395-415(2015)
[13] WANG, J. C., LI, Q. X., and E, W. N. Study of the instability of the Poiseuille flow using a thermodynamic formalism. Proceedings of the National Academy of Sciences, 112, 9518-9523(2015)
[14] AVILA, K., MOXEY, D., DE LOZAR, A., AVILA, M., BARKLEY, D., and HOF, B. The onset of turbulence in pipe flow. Science, 333, 192-196(2011)
[15] DEIKE, L., FUSTER, D., BERHANU, M., and FALCON, E. Direct numerical simulations of capillary wave turbulence. Physical Review Letters, 112, 234501(2014)
[16] KIM, J., MOIN, P., and MOSER, R. Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics, 177, 133-166(1987)
[17] YEE, H., TORCZYNSKI, J., MORTON, S., VISBAL, M., and SWEBY, P. On spurious behavior of CFD simulations. International Journal for Numerical Methods in Fluids, 30, 675-711(1999)
[18] WANG, L. P. and ROSA, B. A spurious evolution of turbulence originated from round-off error in pseudo-spectral simulation. Computers and Fluids, 38, 1943-1949(2009)
[19] YEE, H. C., SWEBY, P. K., and GRIFFITHS, D. F. Dynamical approach study of spurious steadystate numerical solutions of nonlinear differential equations, I:the dynamics of time discretization and its implications for algorithm development in computational fluid dynamics. Journal of Computational Physics, 97, 249-310(1991)
[20] YEE, H. C. and SWEBY, P. K. Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations, Ⅱ:global asymptotic behavior of time discretizations. International Journal of Computational Fluid Dynamics, 4, 219-283(1995)
[21] KRYS'KO, V. A., AWREJCEWICZ, J., and BRUK, V. M. On the solution of a coupled thermomechanical problem for non-homogeneous Timoshenko-type shells. Journal of Mathematical Analysis and Applications, 273, 409-416(2002)
[22] AWREJCEWICZ, J. and KRYSKO, V. A. Nonlinear coupled problems in dynamics of shells. International Journal of Engineering Science, 41, 587-607(2003)
[23] AWREJCEWICZ, J., KRYSKO, V. A., and KRYSKO, A. V. Complex parametric vibrations of flexible rectangular plates. Meccanica, 39, 221-244(2004)
[24] AWREJCEWICZ, J., KRYSKO, A. V., ZHIGALOV, M. V., SALTYKOVA, O. A., and KRYSKO, V. A. Chaotic vibrations in flexible multi-layered Bernoulli-Euler and Timoshenko type beams. Latin American Journal of Solids and Structures, 5, 319-363(2008)
[25] AWREJCEWICZ, J., KRYSKO, A. V., KUTEPOV, I. E., ZAGNIBORODA, N. A., DOBRIYAN, V., and KRYSKO, V. A. Chaotic dynamics of flexible Euler-Bernoulli beams. Chaos, 34, 043130(2014)
[26] KRYSKO, A. V., AWREJCEWICZ, J., SALTYKOVA, O. A., ZHIGALOV, M. V., and KRYSKO, V. A. Investigations of chaotic dynamics of multi-layer beams using taking into account rotational inertial effects. Communications in Nonlinear Science and Numerical Simulation, 19, 2568-2589(2014)
[27] AWREJCEWICZ, J., KRYSKO, V. A. J., PAPKOVA, I. V., KRYLOV, E. Y., and KRYSKO, A. V. Spatio-temporal non-linear dynamics and chaos in plates and shells. Nonlinear Studies, 21, 313-327(2004)
[28] AWREJCEWICZ, J., KRYSKO, A. V., ZAGNIBORODA, N. A., DOBRIYAN, V. V., and KRYSKO, V. A. On the general theory of chaotic dynamic of flexible curvilinear Euler-Bernoulli beams. Nonlinear Dynamics, 85, 2729-2748(2016)
[29] AWREJCEWICZ, J., KRYSKO, A. V., PAPKOVA, I. V., ZAKHAROV, V. M., EROFEEV, N. P., KRYLOVA, E. Y., MROZOWSKI, J., and KRYSKO, V. A. Chaotic dynamics of flexible beams driven by external white noise. Mechanical Systems and Signal Processing, 79, 225-253(2016)
[30] AWREJCEWICZ, J., KRYSKO, A. V., EROFEEV, N. P., DOBRIYAN, V., BARULINA, M. A., and KRYSKO, V. A. Quantifying chaos by various computational methods, part 1:simple systems. Entropy, 20, 175(2018)
[31] AWREJCEWICZ, J., KRYSKO, A. V., EROFEEV, N. P., DOBRIYAN, V., BARULINA, M. A., and KRYSKO, V. A. Quantifying chaos by various computational methods, part 2:vibrations of the Bernoulli-Euler beam subjected to periodic and colored noise. Entropy, 20, 170(2018)
[32] LIAO, S. J. On the reliability of computed chaotic solutions of non-linear differential equations. Tellus A, 61, 550-564(2009)
[33] WANG, P. F., LI, J. P., and LI, Q. Computational uncertainty and the application of a highperformance multiple precision scheme to obtaining the correct reference solution of Lorenz equations. Numerical Algorithms, 59, 147-159(2012)
[34] LIAO, S. J. Physical limit of prediction for chaotic motion of three-body problem. Communications in Nonlinear Science and Numerical Simulation, 19, 601-616(2014)
[35] LIAO, S. J. and WANG, P. F. On the mathematically reliable long-term simulation of chaotic solutions of Lorenz equation in the interval[0, 10000]. Science China:Physics, Mechanics and Astronomy, 57, 330-335(2014)
[36] LIAO, S. J. Can we obtain a reliable convergent chaotic solution in any given finite interval of time? International Journal of Bifurcation and Chaos, 24, 1450119(2014)
[37] LI, X. M. and LIAO, S. J. On the stability of the three classes of Newtonian three-body planar periodic orbits. Science China:Physics, Mechanics and Astronomy, 57, 2121-2126(2014)
[38] LIAO, S. J. and LI, X. M. On the inherent self-excited macroscopic randomness of chaotic threebody systems. International Journal of Bifurcation and Chaos, 25, 1530023(2015)
[39] LIN, Z. L., WANG, L. P., and LIAO, S. J. On the origin of intrinsic randomness of Rayleigh-Bénard turbulence. Science China:Physics, Mechanics and Astronomy, 60, 014712(2017)
[40] LI, X. M. and LIAO, S. J. More than six hundred new families of Newtonian periodic planar collisionless three-body orbits. Science China:Physics, Mechanics and Astronomy, 60, 129511(2017)
[41] LIAO, S. J. On the clean numerical simulation (CNS) of chaotic dynamic systems. Journal of Hydrodynamics, 29, 729-747(2017)
[42] LI, X. M., JING, Y. P., and LIAO, S. J. Over a thousand new periodic orbits of planar three-body system with unequal mass. Publications of the Astronomical Society of Japan, 70, 64(2018)
[43] BARTON, D., WILLERS, I. M., and ZAHAR, R. V. M. The automatic solution of systems of ordinary differential equations by the method of Taylor series. The Computer Journal, 14, 243-248(1971)
[44] CORLISS, G. and LOWERY, D. Choosing a stepsize for Taylor series methods for solving ODEs. Journal of Computational and Applied Mathematics, 3, 251-256(1977)
[45] CORLISS, G. and CHANG, Y. F. Solving ordinary differential equations using Taylor series. ACM Transactions on Mathematical Software, 8, 114-144(1982)
[46] JORBA, Ã. and ZOU, M. R. A software package for the numerical integration of ODEs by means of high-order Taylor methods. Experimental Mathematics, 14, 99-117(2005)
[47] BARRIO, R., BLESA, F., and LARA, M. VSVO formulation of the Taylor method for the numerical solution of ODEs. Computers and Mathematics with Applications, 50, 93-111(2005)
[48] PORTILHO, O. MP-a multiple precision package. Computer Physics Communications, 59, 345-358(1990)
[49] SUN, B. Kepler's third law of n-body periodic orbits in a Newtonian gravitation field. Science China:Physics, Mechanics and Astronomy, 61, 054721(2018)
[50] FRISCH, A., MARK, M., AIKAWA, K., FERLAINO, F., BOHN, J. L., MAKRIDES, C., PETROV, A., and KOTOCHIGOVA, S. Quantum chaos in ultracold collisions of gas-phase erbium atoms. nature, 507, 475-479(2014)
[51] SUSSMAN, G. J. and WISDOM, J. Chaotic evolution of the solar system. Science, 257, 56-62(1992)
[52] MCLACHLAN, R. I., MODIN, K., and VERDIER, O. Symplectic integrators for spin systems. Physical Review E, 89, 061301(2014)
[53] LASKAR, J. and ROBUTEL, P. High order symplectic integrators for perturbed Hamiltonian systems. Celestial Mechanics and Dynamical Astronomy, 80, 39-62(2001)
[54] QIN, H. and GUAN, X. Variational symplectic integrator for long-time simulations of the guidingcenter motion of charged particles in general magnetic fields. Physical Review Letters, 100, 035006(2008)
[55] FARRÉS, A., LASKAR, J., BLANES, S., CASAS, F., MAKAZAGA, J., and MURUA, A. High precision symplectic integrators for the solar system. Celestial Mechanics and Dynamical Astronomy, 116, 141-174(2013).
[56] FOREST, E. and RUTH, R. D. Fourth-order symplectic integration. Physica D:Nonlinear Phenomena, 43, 105-117(1990)
[57] YOSHIDA, H. Construction of higher order symplectic integrators. Physics Letters A, 150, 262-268(1990)
[58] HÉNON, M. and HEILES, C. The applicability of the third integral of motion:some numerical experiments. The Astronomical Journal, 69, 73-79(1964)
[59] SPROTT, J. C. Elegant Chaos:Algebraically Simple Chaotic Flows, World Scientific, Singapore (2010)
[60] LIAO, S. J. On the numerical simulation of propagation of micro-level inherent uncertainty for chaotic dynamic systems. Chaos, Solitons & Fractals, 47, 1-12(2013)
[61] SALTZMAN, B. Finite amplitude free convection as an initial value problem-I. Journal of the Atmospheric Sciences, 19, 329-341(1962) |