[1] VON KARMAN, T. Übe laminare und turbulente Reibung. Zeitschrift für Angewandte Mathematik and Mechanik, 1, 233-252(1921) [2] MAHMOOD, K., SAJID, M., ALI, N., and JAVED, T. Heat transfer analysis in the timedependent slip flow over a lubricated rotating disk. Engineering Science and Technology, an International Journal, 19, 1949-1957(2016) [3] MEHMOOD, A., USMAN, M., and WEIGAND, B. Heat and mass transfer phenomena due to a rotating non-isothermal wavy disk. International Journal of Heat and Mass Transfer, 129, 96-102(2019) [4] YIN, C., ZHENG, L., ZHANG, C., and ZHANG, X. Flow and heat transfer of nanofluids over a rotating disk with uniform stretching rate in the radial direction. Propulsion and Power Research, 6, 25-30(2017) [5] HASSAN, M., FETECAU, C., MAJEED, A., and ZEESHAN, A. Effects of iron nanoparticles' shape on connective flow of ferrofluid under highly oscillating magnetic field over stretchable rotating disk. Journal of Magnetism and Magnetic Materials, 465, 531-539(2018) [6] AHMED, J., KHAN, M., and AHMAD, L. Transient thin film flow of nonlinear radiative Maxwell nanofluid over a rotating disk. Physics Letter A, 383, 1300-1305(2019) [7] ERINGEN, A. C. Simple microfluids. International Journal of Engineering Science, 2, 205-217(1964) [8] ERINGEN, A. C. Theory of micropolar fluids. Journal of Applied Mathematics and Mechanics, 16, 1-8(1966) [9] DOH, D. H. and MUTHTAMILSELVAN, M. Thermophoretic particle deposition on magnetohydrodynamic flow of micropolar fluid due to a rotating disk. International Journal of Mechanical Sciences, 130, 350-359(2017) [10] TURKYILMAZOGLU, M. Mixed convection flow of magnetohydrodynamic micropolar fluid due to a porous heated/cooled deformable plate:exact solutions. International Journal of Heat and Mass Transfer, 106, 127-134(2017) [11] HSIAO, K. Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia features. International Journal of Heat and Mass Transfer, 112, 983-990(2017) [12] KHAN, N. A., KHAN, S., and ARA, A. Flow of micropolar fluid over an off-centered rotating disk and modified Darcy's law. Propulsion and Power Research, 6, 285-295(2017) [13] SAJID, M., SADIQ, M. N., ALI, N., and JAVED, T. Numerical simulation for Homann flow of a micropolar fluid on a spiraling disk. European Journal of Mechanics-B/Fluids, 72, 320-327(2018) [14] TABASSUM, M. and MUSTAFA, M. A. numerical treatment for partial slip flow and heat transfer of non-Newtonian Reiner-Rivlin fluid due to rotating disk. International Journal of Heat and Mass Transfer, 123, 979-987(2018) [15] LOK, Y. Y., ISHAK, A., and POP, I. Oblique stagnation slip flow of a micropolar fluid towards a stretching/shrinking surface:a stability analysis. Chinese Journal of Physics, 56, 3060-3072(2018) [16] MAHDY, A. Aspects of homogeneous-heterogeneous reactions on natural convection flow of micropolar fluid past a permeable cone. Applied Mathematics and Computation, 352, 59-67(2019) [17] MEHMOOD, A., AFSAR, K., ZAMEER, A., AWAN, S. E., ASIF, M., and RAJA, Z. Integrated intelligent computing paradigm for the dynamics of micropolar fluid flow with heat transfer in a permeable walled channel. Applied Soft Computing, 79, 139-162(2019) [18] SHAMSHUDDIN, M. D. and THUMMA, T. Numerical study of a dissipative micropolar fluid flow past an inclined porous plate with heat source/sink. Propulsion and Power Research, 8, 56-68(2019) [19] CHRISTOV, C. I. On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mechanics Research Communications, 36, 481-486(2009) [20] SHEHZAD, S. A., ABBASE, F. M., HAYAT, T., and AHMAD, B. Cattaneo-Christov heat flux model for third-grade fluid flow towards exponentially stretching sheet. Applied Mathematics and Mechanics (English Edition), 37(6), 761-768(2016) https://doi.org/10.1007/s10483-016-2088-6 [21] SUI, J., ZHENG, L., and ZHANG, X. Boundary layer heat and mass transfer with CattaneoChristov double diffusion in upper-convected Maxwell nanofluid past a stretching sheet with slip velocity. International Journal of Thermal Sciences, 104, 461-468(2016) [22] ABBASI, F. M. and SHEHZAD, S. A. Heat transfer analysis for three-dimensional flow of Maxwell fluid with temperature dependent thermal conductivity:application of Cattaneo-Christov heat flux model. Journal of Molecular Liquids, 220, 848-854(2016) [23] KHAN, W. A., KHAN, M., and ALSHOMRANI, A. S. Impact of chemical processes on 3D Burgers fluid utilizing Cattaneo-Christov double diffusion:applications of non-Fourier's heat and non-Fick's mass flux models. Journal of Molecular Liquids, 223, 1039-1047(2016) [24] HAYAT, T., AYUB, T., MUHAMMAD, T., and ALSAEDI, A. Three-dimensional flow with Cattaneo-Christov double diffusion and homogeneous-heterogeneous reactions. Results in Physics, 7, 2812-2820(2017) [25] UPADHAY, M. S., MAHESHA, and RAJU, C. S. K. Cattaneo-Christov on heat and mass transfer of unsteady Eyring Powell dusty nanofluid over sheet with heat and mass flux conditions. Informatics in Medicine Unlocked, 9, 76-85(2017) [26] SHEHZAD, S. A., HAYAT, T., ALSAEDI, A., and MERAJ, M. A. Cattaneo-Christov heat and mass flux model for 3D hydromagnetic flow of chemically reactive Maxwell liquid. Applied Mathematics and Mechanics (English Edition), 38(10), 1347-1356(2017) https://doi.org/10.1007/s10483-017-2250-6 [27] SHEN, M., CHEN, L., ZHANG, M., and LIU, F. A renovated Buongiorno's model for unsteady Sisko nanofluid with fractional Cattaneo heat flux. International Journal of Heat and Mass Transfer, 126, 277-286(2018) [28] RAUF, A., ABBAS, Z., SHEHZAD, S. A., ALSAEDI, A., and HAYAT, T. Numerical simulation of chemically reactive Powell-Eyring liquid flow with double diffusive Cattaneo-Christov heat and mass flux theories. Applied Mathematics and Mechanics (English Edition), 39(4), 467-476(2018) https://doi.org/10.1007/s10483-018-2314-8 [29] HAYAT, T., QAYYUM, S., SHEHZAD, S. A., and ALSAEDI, A. Cattaneo-Christov doublediffusion theory for three-dimensional flow of viscoelastic nanofluid with the effect of heat generation/absorption. Results in Physics, 8, 489-495(2018) [30] HAYAT, T., AZIZ, A., MUHAMMAD, T., and ALSAEDI, A. Three-dimensional flow of Prandtl fluid with Cattaneo-Christov double diffusion. Results in Physics, 9, 290-296(2018) [31] RAUF, A., ABBAS, Z., and SHEHZAD, S. A. Utilization of Maxwell-Cattaneo law for MHD swirling flow through oscillatory disk subject to porous medium. Applied Mathematics and Mechanics (English Edition), 40(6), 837-850(2019) https://doi.org/10.1007/s10483-019-2488-9 [32] MUNAWAR, S., ALI, A., SALEEM, N., and NAQEEB, A. Swirling flow over an oscillatory stretchable disk. Journal of Mechanics, 30, 339-347(2014) [33] MILNE, W. E. Numerical Solutions of Differential Equations, John Willey and Sons Inc., New York (1953) |