[1] LI, Z. L. and ITO, K. The Immersed Interface Method:Numerical Solutions of PDEs Involving Interfaces and Irregular Domains, Society for Industrial and Applied Mathematics (2006) [2] COLLIS, J. M., SIEGMANN, W. L., JENSEN, F. B., ZAMPOLLI, M., KÜSEL, E. T., and COLLINS, M. D. Parabolic equation solution of seismo-acoustics problems involving variations in bathymetry and sediment thickness. Journal of the Acoustical Society of America, 123(1), 51-55(2008) [3] LAYTON, W. J., SCHIEWECK, F., and YOTOV, I. Coupling fluid flow with porous media flow. SIAM Journal on Numerical Analysis, 40(6), 2195-2218(2002) [4] WANG, H., LIANG, D., EWING, R. E., LYONS, S. L., and QIN, G. An approximation to miscible fluid flows in porous media with point sources and sinks by an Eulerian-Lagrangian localized adjoint method and mixed finite element methods. SIAM Journal on Scientific Computing, 22(2), 561-581(2000) [5] BABUŠKA, I. The finite element method for elliptic equations with discontinuous coefficients. Computing, 5(3), 207-213(1970) [6] BRAMBLE, J. H. and KING, J. T. A finite element method for interface problems in domains with smooth boundaries and interfaces. Advances in Computational Mathematics, 6(1), 109-138(1996) [7] CHEN, Z. M. and ZOU, J. Finite element methods and their convergence for elliptic and parabolic interface problems. Numerische Mathematik, 79(2), 175-202(1998) [8] XIE, H., LI, Z. L., and QIAO, Z. H. A finite element method for elasticity interface problems with locally modified triangulations. International Journal of Numerical Analysis and Modeling, 8(2), 189-200(2011) [9] WEI, H. Y., CHEN, L., HUANG, Y. Q., and ZHENG, B. Adaptive mesh refinement and superconvergence for two-dimensional interface problems. SIAM Journal on Scientific Computing, 36(4), 1478-1499(2014) [10] KELLOGG, R. B. Singularities in interface problems. Numerical Solution of Partial Differential Equations-II, Academic Press, New York, 351-400(1971) [11] MOUMNASSI, M., BELOUETTAR, S., BÉCHET, É., BORDAS, S. P. A., QUOIRIN, D., and POTIERFERRYB, M. Finite element analysis on implicitly defined domains:an accurate representation based on arbitrary parametric surfaces. Computer Methods in Applied Mechanics and Engineering, 200(5), 774-796(2011) [12] NADAL, E., RÓDENAS, J. J., ALBELDA, J., TUR, M., TARANCÓN, J. E., and FUENMAYOR, F. J. Efficient finite element methodology based on cartesian grids:application to structural shape optimization. Abstract and Applied Analysis, 2013(1), 900-914(2013) [13] LI, Z. L. The immersed interface method using a finite element formulation. Applied Numerical Mathematics, 27(3), 253-267(1998) [14] LI, Z. L., LIN, T., LIN, Y. P., and ROGERS, R. C. An immersed finite element space and its approximation capability. Numerical Methods for Partial Differential Equations, 20(3), 338-367(2004) [15] LI, Z. L., LIN, T., and WU, X. H. New cartesian grid methods for interface problems using the finite element formulation. Numerische Mathematik, 96(1), 61-98(2003) [16] CHOU, S. H., KWAK, D. Y., and WEE, K. T. Optimal convergence analysis of an immersed interface finite element method. Advances in Computational Mathematics, 33(2), 149-168(2010) [17] JI, H. F., CHEN, J. R., and LI, Z. L. A symmetric and consistent immersed finite element method for interface problems. Journal of Scientific Computing, 61(3), 533-557(2014) [18] JI, H. F., CHEN, J. R., and LI, Z. L. A new augmented immersed finite element method without using SVD interpolations. Numerical Algorithms, 71(2), 395-416(2016) [19] FENG, W. Q., HE, X. M., LIN, Y. P., and ZHANG, X. Immersed finite element method for interface problems with algebraic multigrid solver. Communications in Computational Physics, 15(4), 1045-1067(2014) [20] GONG, Y., LI, B., and LI, Z. L. Immersed-interface finite-element methods for elliptic interface problems with nonhomogeneous jump conditions. SIAM Journal on Numerical Analysis, 46(1), 472-495(2008) [21] LIN, T., LIN, Y. P., and ZHANG, X. Partially penalized immersed finite element methods for ellitptic interface problems. SIAM Journal on Numerical Analysis, 53(2), 1121-1144(2015) [22] CAO, W. X., ZHANG, X., and ZHANG, Z. M. Superconvergence of immersed finite element methods for interface problems. Advances in Computational Mathematics, 74(1), 1-27(2018) [23] HANSBO, P., LOVADINA, C., PERUGIA, I., and SANGALLI, G. A lagrange multiplier method for the finite element solution of elliptic interface problems using non-matching meshes. Numerische Mathematik, 100(1), 91-115(2005) [24] HUANG, J. G. and ZOU, J. A mortar element method for elliptic problems with discontinuous coefficients. IMA Journal of Numerical Analysis, 22(4), 549-576(2002) [25] LAMICHHANE, B. P. and WOHLMUTH, B. I. Mortar finite elements for interface problems. Computing, 72(3-4), 333-348(2004) [26] HUANG, P. Q., WU, H. J., and XIAO, Y. M. An unfitted interface penalty finite element method for elliptic interface problems. Computer Methods in Applied Mechanics and Engineering, 323, 439-460(2017) [27] XU, J. C. Two-grid discretization techniques for linear and nonlinear PDEs. SIAM Journal on Numerical Analysis, 33(5), 1759-1777(1996) [28] XU, J. C. A novel two-grid method for semilinear elliptic equations. SIAM Journal on Scientific Computing, 15(1), 231-237(1994) [29] HUANG, Y. Q. and CHEN, Y. P. A multi-level iterative method for solving finite element equations of nonlinear singular two-point boundary value problems (in Chinese). Natural Science Journal of Xiangtan University, 16, 23-26(1994) [30] DAWSON, C. N., WHEELER, M. F., and WOODWARD, C. S. A two-grid finite difference scheme for nonlinear parabolic equations. SIAM Journal on Numerical Analysis, 35(2), 435-453(1998) [31] XU, J. C. and ZHOU, A. H. Local and parallel finite element algorithms based on two-grid discretizations for nonlinear problems. Mathematics of Computation of the American Mathematical Society, 69(4), 293-327(2000) [32] HE, Y. N. Two-level method based on finite element and crank-nicolson extrapolation for the time-dependent navier-stokes equation. SIAM Journal on Numerical Analysis, 41(4), 1263-1285(2004) [33] CHEN, Y. P., HUANG, Y. Q., and YU, D. H. A two-grid method for expanded mixed finiteelement solution of semilinear reaction-diffusion equations. International Journal for Numerical Methods in Engineering, 57(2), 193-209(2003) [34] CHEN, Y. P., WANG, Y., HUANG, Y. Q., and FU, L. X. Two-grid methods of expanded mixed finite-element solutios for nonlinear parabolic problems. Applied Numererical Mathematics (2019) http://doi.org/10.1016/j.apnum.2019.04015 [35] CHEN, Y. P. and HU, H. Z. Two-grid method for miscible displacement problem by mixed finite element methods and mixed finite element method of characteristics. Communications in Computational Physics, 19(5), 1503-1528(2016) [36] WANG, Y. and CHEN, Y. P. A two-grid method for incompressible miscible displacement problems by mixed finite element and Eulerian-Lagrangian localized adjoint methods. Journal of Mathematical Analysis and Applications, 468(1), 406-422(2018) [37] JIN, J. C., SHU, S., and XU, J. C. A two-grid discretization method for decoupling systems of partial differential equations. Mathematics of Computation, 75(256), 1617-1626(2006) [38] CHEN, L., HOLST, M. J., and XU, J. C. The finite element approximation of the nonlinear poissonboltzmann equation. SIAM Journal on Numerical Analysis, 45(6), 2298-2320(2007) [39] MU, M. and XU, J. C. A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow. SIAM Journal on Numerical Analysis, 45(5), 1801-1810(2007) [40] HOLST, M. J., RYAN, S., and ZHU, Y. R. Two-grid methods for semilinear interface problems. Numerical Methods for Partial Differential Equations, 29(5), 1729-1748(2012) |