[1] |
MEHRA, J. and RECHENBERG, H. The Historical Development of Quantum Theory, Vols. I-VI, Springer, Berlin (2000)
|
[2] |
PLANCK, M. Über das Gesetz der energieverteilung im normalspektrum. Annalen der Physik, 309, 553-563(1901)
|
[3] |
EINSTEIN, A. Über einen die Erzeugung und Verwandlung des Lichtes betref enden heuristischen Gesichtspunkt. Annalen der Physik, 322, 132-148(1905)
|
[4] |
BOHR, N. On the constitution of atoms and molecules:part I. Philosophical Magazine, 26, 1-24(1913)
|
[5] |
BOHR, N. On the constitution of atoms and molecules:part II. Philosophical Magazine, 26, 476-502(1913)
|
[6] |
BOHR, N. On the constitution of atoms and molecules:part III. Philosophical Magazine, 26, 857-875(1913)
|
[7] |
DE BROGLIE, L. Recherches sur la thèorie des quanta. Annales de Physique, 3, 22-128(1925)
|
[8] |
HEISENBERG, W. Über die quantentheoretische umdeutung kinematischer und mechanischer Bezieungen. Zeitschrift für Physik, 33, 879-893(1925)
|
[9] |
DIRAC, P. A. M. The fundamental equations of quantum mechanics. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 109, 642-653(1925)
|
[10] |
BORN, M. and JORDAN, P. Zur quantenmechanik:I. Zeitschrift für Physik, 34, 858-888(1925)
|
[11] |
BORN, M., HEISENBERG, W., and JORDAN, P. Zur quantenmechanik:II. Zeitschrift für Physik, 35, 557-615(1926)
|
[12] |
BORN, M. Zur quantenmechanik der Stoßvorgänge. Zeitschrift für Physik, 37, 863-867(1926)
|
[13] |
SCHRÖDINGER, E. Quantisierung als eigenwertproblem:I. Annalen der Physik, 79, 361-376(1926)
|
[14] |
SCHRÖDINGER, E. Quantisierung als eigenwertproblem:II. Annalen der Physik, 79, 489-527(1926)
|
[15] |
SCHRÖDINGER, E. Quantisierung als eigenwertproblem:III. Annalen der Physik, 80, 437-490(1926)
|
[16] |
SCHRÖDINGER, E. Quantisierung als eigenwertproblem:IV. Annalen der Physik, 81, 109-139(1926)
|
[17] |
SCHRÖDINGER, E. Über das Verhältnis der Heisenberg-Born-Jordanschen quä ntenmechanik zu der meinen. Annalen der Physik, 79, 734-756(1926)
|
[18] |
SCHRÖDINGER, E. Der stetige Übergang von der mikro-zur makromechanik. Die Naturwissenschaften, 14, 664-666(1926)
|
[19] |
HEISENBERG, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik, 43, 172-198(1927)
|
[20] |
HENCKY, H. Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen. Zeitschrift für Technische Physik, 9, 215-220; 457(1928)
|
[21] |
HENCKY, H. Welche Umstände bedingen die Verfestigung bei der bildsamen Verformung von festen isotropen Körpern? Zeitschrift für Physik, 55, 145-155(1929)
|
[22] |
HENCKY, H. Das Superpositionsgesetz eines endlich deformierten relaxationsfäigen elastischen Kontinuums und seine Bedeutung für eine exakte Ableitung der Gleichungen für die zähe Flüssigkeit in der Eulerschen Form. Annalen der Physik, 5, 617-630(1929)
|
[23] |
RICHTER, H. Das isotrope Elastizitätsgesetz. Zeitschrift für Angewandte Mathematik und Mechanik, 28, 202-209(1948)
|
[24] |
RICHTER, H. Verzerrungstensor, Verzerrungsdeviator und Spannungstensor bei endlichen Formänderungen. Zeitschrift für Angewandte Mathematik und Mechanik, 29, 65-75(1949)
|
[25] |
HILL, R. On constitutive inequalities for simple materials. Journal of the Mechanics and Physics of Solids, 16, 229-242(1968)
|
[26] |
HILL, R. Constitutive inequalities for isotropic elastic solids at finite strain. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 326, 131-147(1970)
|
[27] |
ANAND, L. On H. Hencky's approximate strain-energy function for moderate deformations. Journal of Applied Mechanics, 46, 78-82(1979)
|
[28] |
FITZJERALD, S. A tensorial Hencky measure of strain and strain rate for finite deformation. Journal of Applied Physics, 51, 5111-5115(1980)
|
[29] |
XIAO, H., BRUHNS, O., and MEYERS, A. Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mechanica, 124, 89-105(1997)
|
[30] |
XIAO, H., BRUHNS, O. T., and MEYERS, A. Hypoelasticity model based upon the logarithmic stress rate. Journal of Elasticity, 47, 51-68(1998)
|
[31] |
XIAO, H., BRUHNS, O., and MEYERS, A. Existence and uniqueness of the integrable-exactly hypoelastic equation (τ=λ(trD)I +2μD) and its significance to finite inelasticity. Acta Mechanica, 138, 31-50(1999)
|
[32] |
XIAO, H., BRUHNS, O., and MEYERS, A. The choice of objective rates in finite elastoplasticity:general results on the uniqueness of the logarithmic rate. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 456, 1865-1882(2000)
|
[33] |
XIAO, H. and CHEN, L. S. Hencky's elasticity model and linear stress-strain relations in isotropic finite hyperelasticity. Acta Mechanica, 157, 51-60(2002)
|
[34] |
XIAO, H. and CHEN, L. S. Hencky's logarithmic strain measure and dual stress-strain and strainstress relations in isotropic finite hyperelasticity. International Journal of Solids and Structures, 40, 1455-1463(2003)
|
[35] |
BRUHNS, O., XIAO, H., and MEYERS, A. Constitutive inequalities for an isotropic elastic strainenergy function based upon Hencky's logarithmic strain tensor. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 457, 2207-2226(2001)
|
[36] |
XIAO, H., BRUHNS, O., and MEYERS, A. Thermodynamic laws and consistent Eulerian formulation of finite elastoplasticity with thermal effects. Journal of the Mechanics and Physics of Solids, 55, 338-365(2007)
|
[37] |
NEFF, P., EIDEL, B., and MARTIN, R. J. Geometry of logarithmic strain measures in solid mechanics. Archive for Rational Mechanics and Analysis, 222, 507-572(2016)
|
[38] |
XIAO, H. Hencky strain and Hencky model:extending history and ongoing tradition. Multidiscipline Modeling in Materials and Structures, 1, 1-52(2005)
|
[39] |
XIAO, H., BRUHNS, O., and MEYERS, A. Elastoplasticity beyond small deformations. Acta Mechanica, 182, 31-111(2006)
|
[40] |
BAGGOTT, J. Beyond Measure:Modern Physics, Philosophy and the Meaning of Quantum Mechanics, Oxford University Press, Oxford (2004)
|
[41] |
ROSENBLUM, B. and KUTTNER, F. Quantum Enigma, Oxford University Press, Oxford (2011)
|
[42] |
WEINBERG, S. Dreams of a Final Theory, Vaintage, London (1994)
|
[43] |
SMOLIN, L. The Trouble with Physics, Spin Networks Ltd., New York (2006)
|
[44] |
DIRAC, P. A. M. Directions in Physics, John Wiley and Sons, Inc., New York (1978)
|
[45] |
BELL, J. S. Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press, Cambridge (1987)
|
[46] |
LEGGETT, A. J. The Problems of Physics, Oxford University Press, Oxford (1987)
|
[47] |
T'HOOFT, G. The Cellular Automaton Interpretation of Quantum Mechanics, Springer International Publishing, New York (2015)
|
[48] |
WEINBERG, S. The trouble with quantum mechanics. New York Review of Books, 64, 51-53(2017)
|
[49] |
DE BROGLIE, L. Ondes et Mouvements, Gautier-Villars, Paris (1926)
|
[50] |
DE BROGLIE, L. An Introduction to the Study of Wave Mechanics, Methuen, London (1930)
|
[51] |
BOHM, D. A suggested interpretation of the quantum theory in terms of hidden variables, I and II. Physical Review, 85, 166-193(1952)
|
[52] |
BOHM, D. and HILEY, B. J. The Undivided Universe:An Ontological Interpretation of Quantum Mechanics, Routledge, London (1993)
|
[53] |
BERNDL, K., DAUMER, M., DÜRR, D., GOLDSTEIN, S., and ZANGHI, N. A survey on Bohmian mechanics. Nuovo Cimento, B110, 737-750(1995)
|
[54] |
CUSHING, J. T., FINE, A., and GOLDSTEINI, S. Bohmian Mechanics and Quantum Theory:an Appraisal, Springer, Dordrecht (1996)
|
[55] |
SEWELL, G. Quantum Mechanics and Its Emergent Macrophysics, Princeton University Press, New Jersey (2002)
|
[56] |
ADLER, S. L. Quantum Theory as an Emergent Phenomenon, Cambridge University Press, Cambridge (2004)
|
[57] |
T'HOOFT, G. Emergent quantum mechanics and emergent symmetries. AIP Conference Proceedings, 957, 154(2007)
|
[58] |
XIAO, H. Quantum enigma hidden in continuum mechanics. Applied Mathematicsand Mechanics (English Edition), 38(1), 39-56(2017) https://doi.org/10.1007/s10483-017-2151-6
|
[59] |
XIAO, H. Deformable media with quantized effects. Journal of Astrophysics and Aerospace Technology, 5, 87(2017)
|
[60] |
MADELUNG, E. Quantumtheorie in hydrodynamische form. Zeitschrift für Physik, 40, 322-326(1926)
|
[61] |
HOLLAND, P. The Quantum Theory of Motion, Cambridge University Press, Cambridge (1993)
|
[62] |
BUSH, J. W. M. Pilot-wave hydrodynamics. Annual Review of Fluid Mechanics, 47, 269-292(2015)
|
[63] |
ZHANG, Y. Y., LI, H., YIN, Z. N., and XIAO, H. Further study of rubber-like elasticity:elastic potentials matching biaxial data. Applied Mathematicsand Mechanics (English Edition), 35(1), 13-24(2014) https://doi.org/10.1007/s10483-014-1768-x
|
[64] |
YU, L. D., JIN, T. F., YIN, Z. N., and XIAO, H. Multi-axial strain-stiffening elastic potentials with energy bounds:explicit approach based on uniaxial data. Applied Mathematicsand Mechanics (English Edition), 36(7), 883-894(2015) https://doi.org/10.1007/s10483-015-1955-9
|
[65] |
DIRAC, P. A. M. Relativity and quantum mechanics. Fields and Quanta, 3, 139-164(1972)
|
[66] |
YANG, C. N. Square root of minus one, complex phases and Erwin Schrödinger. Schrödinger Centenary Celebration of a Polymath, Cambridge University Press, Cambridge, 53-64(1987)
|