[1] |
KOGAN, S. M. Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Soviet Physics-Solid State, 5(10), 2069-2070(1964)
|
[2] |
ZHANG, Y. M., CHEN, H., DAI, L. X., HU, H. P., FAN, G. F., and LV, W. Z. Analysis on performance of flextensional piezoelectric hydrophone. 2017 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, Sichuan, 235-239(2017)
|
[3] |
WANG, H. R., XIE, J. M., XIE, X., HU, Y. T., and WANG, J. Nonlinear characteristics of circular-cylinder piezoelectric power harvester near resonance based on flow-induced flexural vibration mode. Applied Mathematics and Mechanics (English Edition), 35(2), 229-236(2014) https://doi.org/10.1007/s10483-014-1756-6
|
[4] |
YANG, Z. T., YANG, J. S., and HU, Y. T. Optimal electrode shape and size of doubly rotated quartz plate thickness mode piezoelectric resonators. Applied Physics Letters, 92(10), 103516(2008)
|
[5] |
HASHIMOTO, K. Y. Surface Acoustic Wave Devices in Telecommunications, Springer, Berlin (2000)
|
[6] |
XIE, J. M. and HU, Y. T. Electric admittance analysis of quartz crystal resonator in thicknessshear mode induced by array of surface viscoelastic micro-beams. Applied Mathematics and Mechanics (English Edition), 38(1), 29-38(2017) https://doi.org/10.1007/s10483-017-2154-6
|
[7] |
NAKAGAWA, R., KYOYA, H., SHIMIZU, H., KIHARA, T., and HASHIMOTO, K. Y. Study on generation mechanisms of second-order nonlinear signals in surface acoustic wave devices and their suppression. Japanese Journal of Applied Physics, 54(7S1), 07HD12(2015)
|
[8] |
NAKAGAWA, R., SUZUKI, T., SHIMIZU, H., KYOYA, H., and HASHIMOTO, K. Y. Study on generation mechanisms of third-order nonlinearity in SAW devices. Ultrasonics Symposium, IEEE (2015)
|
[9] |
YONG, Y. K. and PANG, X. Nonlinear frequency response of second harmonic generation in SAW IDT resonators. 2017 IEEE International Ultrasonics Symposium, IEEE, 1-4(2017)
|
[10] |
YONG, Y., PATEL, M., and TANAKA, M. Effects of thermal stresses on the frequencytemperature behavior of piezoelectric resonators. Journal of Thermal Stresses, 30(6), 639-661(2007)
|
[11] |
THURSTON, R., MCSKIMIN, H., and ANDREATCH, J. P. Third-order elastic coefficients of quartz. Journal of Applied Physics, 37(1), 267-275(1966)
|
[12] |
THURSTON, R. and BRUGGER, K. Third-order elastic constants and the velocity of small amplitude elastic waves in homogeneously stressed media. Physical Review, 133(6A), A1604(1964)
|
[13] |
BOGARDUS, E. Third-order elastic constants of Ge, MgO, and fused SiO2. Journal of Applied Physics, 36(8), 2504-2513(1965)
|
[14] |
CHO, Y. and YAMANOUCHI, K. Nonlinear, elastic, piezoelectric, electrostrictive, and dielectric constants of lithium niobate. Journal of Applied Physics, 61(3), 875-887(1987)
|
[15] |
MAYER, A., MAYER, E., MAYER, M., JÄGER, P., RUILE, W., BLEYL, I., and WAGNER, K. Effective nonlinear constants for SAW devices from FEM calculations. IEEE International Ultrasonics Symposium, IEEE, 1-4(2015)
|
[16] |
LIU, H., SHIN, K. C., LEE, J. J., and CAI, Z. M. Nonlinear acoustoelastic interactions of lamb waves with LiNbO3 films deposited on sapphire substrates. Key Engineering Materials, 261, 263-268(2004)
|
[17] |
ARTIOLI, G., MONACO, H. L., VITERBO, D., FERRARIS, G., GILLI, G., ZANOTTI, G., and CATTI, M. Fundamentals of Crystallography, Oxford University Press, Oxford (2002)
|
[18] |
HEARMON, R. "Third-order" elastic coefficients. Acta Crystallographica, 6(4), 331-340(1953)
|
[19] |
MEITZLER, A., TIERSTEN, H., WARNER, A., BERLINCOURT, D., COQUIN, G., and WELSH, I. IEEE Standard on Piezoelectricity, American National Standards Institute, New York (1988)
|
[20] |
TAGANTSEV, A. Piezoelectricity and flexoelectricity in crystalline dielectrics. Physical Review B, 34(8), 5883(1986)
|
[21] |
RAY, M. Exact solutions for flexoelectric response in nanostructures. Journal of Applied Mechanics, 81(9), 091002(2014)
|
[22] |
MURA, T. Micromechanics of Defects in Solids, Springer Science & Business Media, Dordrecht (1987)
|
[23] |
HU, Y. T., WANG, J. N., YANG, F., XUE, H., HU, H. P., and WANG, J. The effects of first-order strain gradient in micro piezoelectric-bimorph power harvesters. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 58(4), 849-852(2011)
|
[24] |
WANG, J. N., WANG, H. R., HU, H. P., LUO, B., and HU, Y. T. On the strain-gradient effects in micro piezoelectric-bimorph circular plate power harvesters. Smart Materials & Structures, 21, 015006(2012)
|
[25] |
WANG, Y. and HERRON, N. Nanometer-sized semiconductor clusters:materials synthesis, quantum size effects, and photophysical properties. The Journal of Physical Chemistry, 95(2), 525-532(1991)
|
[26] |
AULD, B. A. Acoustic Fields and Waves in Solids, Wiley, New York (1973)
|
[27] |
NEWNHAM, R. E. Properties of Materials:Anisotropy, Symmetry, Structure, Oxford University Press on Demand, Oxford (2005)
|
[28] |
LUAN, G. D., ZHANG, J. D., and WANG, R. Q. Piezoelectric Transducers and Array (in Chinese), Beijing University Press, Beijing (2005)
|
[29] |
YANG, J. An Introduction to the Theory of Piezoelectricity, Springer, New York (2005)
|
[30] |
TAGANTSEV, A. Theory of flexoelectric effect in crystals. Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, 88(6), 2108-2122(1985)
|
[31] |
HU, S. L. and SHEN, S. P. Variational principles and governing equations in nano-dielectrics with the flexoelectric effect. Science China Physics, Mechanics and Astronomy, 53(8), 1497-1504(2010)
|