[1] DING, D. H., YANG, W. G., HU, C. Z., and WANG, R. H. Generalized elasticity theory of quasicrystals. Physical Review B, 48(10), 7003-7010(1993) [2] DING, D., YANG, W., HU, C., and WANG, R. Linear elasticity theory of quasicrystals and defects in quasicrystals. Materials Science Forum, 150-151, 345-354(1994) [3] FAN, T. Y. A study on the specific heat of a one-dimensional hexagonal quasicrystal. Journal of Physics: Condensed Matter, 11(45), L513-L517(1999) [4] LIU, G. T., FAN, T. Y., and GUO, R. P. Governing equations and general solutions of plane elasticity of one-dimensional quasicrystals. International Journal of Solids and Structures, 41(14), 3949-3959(2004) [5] PENG, Y. Z. and FAN, T. Y. Perturbation theory of 2D decagonal quasicrystals. Physica B: Condensed Matter, 311(3-4), 326-330(2000) [6] WOLLGARTEN, M., BEYSS, M., URBAN, K., LIEBERTZ, H., and KÖSTER, U. Direct evidence for plastic deformation of quasicrystals by means of a dislocation mechanism. Physical Review Letters, 71(4), 549-552(1993) [7] ROSENFELD, R., FEUERBACHER, M., BAUFELD, B., BARTSCH, M., WOLLGARTEN, M., HANKE, G., BEYSS, M., MESSERSCHMIDT, U., and URBAN, K. Study of plastically deformed icosahedral Al-Pd-Mn single quasicrystals by transmission electron microscopy. Philosophical Magazine Letters, 72(6), 375-384(1995) [8] SCHALL, P., FEUERBACHER, M., BARTSCH, M., MESSERSCHMIDT, U., and URBAN, K. Dislocation density evolution upon plastic deformation of Al-Pd-Mn single quasicrystals. Philosophical Magazine Letters, 79(10), 785-796(1999) [9] GEYER, B., BARTSCH, M., FEUERBACHER, M., URBAN, K., and MESSERSCHMIDT, U. Plastic deformation of icosahedral Al-Pd-Mn single quasicrystals I: experimental results. Philosophical Magazine A, 80(5), 1151-1163(2000) [10] FEUERBACHER, M., BARTSCH, M., GRUSHKO, B., MESSERSCHMIDT, U., and URBAN, K. Plastic deformation of decagonal Al-Ni-Co quasicrystals. Philosophical Magazine Letters, 76(6), 369-376(1997) [11] MESSERSCHMIDT, U., BARTSCH, M., FEUERBACHER, M., GEYER, B., and URBAN, K. Friction mechanism of dislocation motion in icosahedral Al-Pd-Mn quasicrystals. Philosophical Magazine A, 79(9), 2123-2135(1999) [12] TAKEUCHI, S. Homologous temperature dependence of the yield stress of icosahedral quasicrystals and its implication. Philosophical Magazine, 86(6-8), 1007-1013(2006) [13] EBERT, P., FEUERBACHER, M., TAMURA, N., WOLLGARTEN, M., and URBAN, K. Evidence for a cluster-based structure of AlPdMn single quasicrystals. Physical Review Letters, 77(18), 3827-3830(1996) [14] TAKAKURA, H., SHIONO, M., SATO, T. J., YAMAMOTO, A., and TSAI, A. P. Ab initio structure determination of icosahedral Zn-Mg-Ho quasicrystals by density modification method. Physical Review Letters, 86(2), 236-239(2001) [15] FAN, T. Y., TREBIN, H. R., MESSERSCHMIDT, U., and MAI, Y. W. Plastic flow coupled with a crack in some one- and two-dimensional quasicrystals. Journal of Physics: Condensed Matter, 16(29), 5229-5240(2004) [16] FAN, T. Y. and FAN, L. Plastic fracture of quasicrystals. Philosophical Magazine, 88(4), 523-535(2008) [17] LI, W. and FAN, T. Y. Plastic analysis of the crack problem in two-dimensional decagonal Al-Ni-Co quasicrystalline materials of point group. Chinese Physics B, 20(3), 036101(2011) [18] LI, W. and XIE, L. Y. A Dugdale-Barenblatt model for a strip with a semi-infinite crack embedded in decagonal quasicrystals. Chinese Physics B, 22(3), 036201(2013) [19] LIU, G. T., GUO, R. P., and FAN, T. Y. On the interaction between dislocations and cracks in one-dimensional hexagonal quasi-crystals. Chinese Physics, 12(10), 1149-1155(2003) [20] GAO, Y., XU, S. P., and ZHAO, B. S. Boundary conditions for plate bending in one-dimensional hexagonal quasicrystals. Journal of Elasticity, 86(3), 221-233(2006) [21] GUO, J. H. and LIU, G. T. Analytic solutions to problem of elliptic hole with two straight cracks in one-dimensional hexagonal quasicrystals. Applied Mathematics and Mechanics (English Edition), 29(4), 485-493(2008) https://doi.org/10.1007/s10483-008-0406-x [22] GUO, J. H. and LU, Z. X. Exact solution of four cracks originating from an elliptical hole in one-dimensional hexagonal quasicrystals. Applied Mathematics and Computation, 217(22), 9397-9403(2011) [23] PENG, Y. Z., FAN, T. Y., JIANG, F. R., ZHANG, W. G., and SUN, Y. F. Perturbative method for solving elastic problems of one-dimensional hexagonal quasicrystals. Journal of Physics: Condensed Matter, 13(18), 4123-4128(2001) [24] SLADEK, J., SLADEK, V., and PAN, E. Bending analyses of 1D orthorhombic quasicrystal plates. International Journal of Solids and Structures, 50(24), 3975-3983(2013) [25] YANG, L. Z., GAO, Y., PAN, E., and WAKSMANSKI, N. An exact closed-form solution for a multilayered one-dimensional orthorhombic quasicrystal plate. Acta Mechanica, 226(11), 3611-3621(2015) [26] LI, Y., YANG, L. Z., and GAO, Y. An exact solution for a functionally graded multilayered one-dimensional orthorhombic quasicrystal plate. Acta Mechanica, 230(4), 1257-1273(2017) [27] ZHANG, L. L., ZHANG, Y. M., and GAO, Y. General solutions of plane elasticity of one-dimensional orthorhombic quasicrystals with piezoelectric effect. Physics Letters A, 378(37), 2768-2776(2014) [28] WANG, R. H., YANG, W. G., HU, C. Z., and DING, D. H. Point and space groups and elastic behaviours of one-dimensional quasicrystals. Journal of Physics: Condensed Matter, 9(11), 2411-2422(1997) [29] SOSA, H. Plane problems in piezoelectric media with defects. International Journal of Solids and Structures, 28(4), 491-505(1991) [30] KUANG, Z. B. and MA, F. S. Crack Tip Fields (in Chinese), Xi'an Jiaotong University Press, Xi'an (2002) [31] LEKHNITSKII, S. G. Theory of Elasticity of an Anisotropic Body, Holden-Day, San-Francisco (1963) [32] DUGDALE, D. S. Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 8(2), 100-104(1960) [33] GAO, Y. Y. and LIU, G. T. Analytical solutions for problems of an elliptical hole with four edge cracks in 1D orthorhombic quasicrystal (in Chinese). Applied Mathematics and Mechanics, 40(2), 210-222(2019) [34] FAN, T. Y. Fracture Theory Basis (in Chinese), Science Press, Beijing (2003) [35] LIANG, J. Y. and LI, W. Plastic simulation of elliptical orifice with double cracks in one-dimensional hexagonal quasi-crystals (in Chinese). Advances in Applied Mathematics, 9(7), 1006-1015(2020) [36] CHERNIKOV, M. A., OTT, H. R., BIANCHI, A., MIGLIORI, A., and DARLING, T. W. Elastic moduli of a single quasicrystal of decagonal Al-Ni-Co: evidence for transverse elastic isotropy. Physical Review Letters, 80(2), 321-324(1998) [37] FAN, T. Y. Mathematical theory and methods of mechanics of quasicrystalline materials. Engineering, 5(4), 407-448(2013) [38] GUO, Y. C. and Fan, T. Y. A mode-II Griffith crack in decagonal quasicrystals. Applied Mathematics and Mechanics (English Edition), 22(11), 1311-1317(2001) https://doi.org/10.1007/BF02437856 [39] YIN, S. Y., ZHOU, W. M., and FAN, T. Y. A mode II crack in a two-dimensional octagonal quasicrystals. Applied Mathematics and Mechanics (English Edition), 23(4), 415-420(2002) https://doi.org/10.1007/BF02436210 [40] ROCHAL, S. B., DMITRIEV, V. P., LORMAN, V. L., and TOLÉDANO, P. Local mechanism for crystal-quasicrystal transformations. Physics Letters A, 220(1-3), 111-116(1996) [41] PREKUL, A. F., KUZ'MIN, N. Y., and SHCHEGOLIKHINA, N. I. Electronic structure of icosahedral quasicrystals: role of defects. Journal of Alloys and Compounds, 342(1-2), 405-409(2002) [42] LI, X. F., DUAN, X. Y., FAN, T. Y., and SUN, Y. F. Elastic field for a straight dislocation in a decagonal quasicrystal. Journal of Physics: Condensed Matter, 11(3), 703-711(1999) [43] GAO, Y. and RICOEUR, A. The refined theory of one-dimensional quasi-crystals in thick plate structures. Journal of Applied Mechanics, 78(3), 031021(2011) [44] LI, L. H., CUI, X. W., and GUO, J. H. Interaction between a screw dislocation and an elliptical hole with two asymmetrical cracks in a one-dimensional hexagonal quasicrystal with piezoelectric effect. Applied Mathematics and Mechanics (English Edition), 41(6), 899-908(2020) https://doi.org/10.1007/s10483-020-2615-6 [45] SENECHAL, M. Quasicrystals and mathematics. Phase Transitions, 43(1-4), 27-34(2006) [46] WANG, X. and ZHONG, Z. Interaction between a semi-infinite crack and a straight dislocation in a decagonal quasicrystal. International Journal of Engineering Science, 42(5-6), 521-538(2004) [47] LI, X. F., DUAN, X. Y., FAN, T. Y., and SUN, Y. F. A decagonal quasicrystal with a Griffith crack. Philosophical Magazine A, 79(8), 1943-1952(1999) |