[1] MERAL, F. C., ROYSTON, T. J., and MAGIN, R. Fractional calculus in viscoelasticity: an experimental study. Communications in Nonlinear Science and Numerical Simulation, 15(4), 939–945(2010) [2] KOBAYASHI, Y., TSUKUNE, M., MIYASHITA, T., and FUJIE, M. G. Simple empirical model for identifying rheological properties of soft biological tissues. Physical Review E, 95(2), 022418(2017) [3] DU, M. L., WANG, Z. H., and HU, H. Y. Measuring memory with the order of fractional derivative. Scientific Reports, 3, 3431(2013) [4] MAGIN, R. L. Fractional calculus models of complex dynamics in biological tissues. Computers & Mathematics with Applications, 59(5), 1586–1593(2010) [5] IONESCU, C., LOPES, A., COPOT, D., MACHADO, J. A. T., and BATES, J. H. T. The role of fractional calculus in modeling biological phenomena: a review. Communications in Nonlinear Science and Numerical Simulation, 51, 141–159(2017) [6] FITZGIBBON, B. and MCGARRY, P. Development of a test method to investigate mode II fracture and dissection of arteries. Acta Biomaterialia, 121, 444–460(2021) [7] TONG, X., CHEN, X., XU, J. S., SUN, C. X., and LIANG, W. Excitation of thermal dissipation of solid propellants during the fatigue process. Materials & Design, 128, 47–55(2017) [8] ZHANG, C. Y. Viscoelastic Fracture Mechanics, Science Press, Beijing (2006) [9] KNAUSS, W. G. A review of fracture in viscoelastic materials. International Journal of Fracture, 196(1), 99–146(2015) [10] WANG, Z. H., ZHANG, L., and GUO, L. C. A viscoelastic fracture mechanics model for a functionally graded materials strip with general mechanical properties. European Journal of Mechanics A/Solids, 44, 75–81(2014) [11] YANG, W. Z. and CHEN, Z. T. Thermo-viscoelastic response of a cracked, functionally graded half-plane under a thermal shock. Engineering Fracture Mechanics, 206, 267–277(2019) [12] YANG, W. Z. and CHEN, Z. T. Investigation of transient thermal-mechanical behavior of a cracked viscoelastic material using time-fractional dual-phase-lag theory. Theoretical and Applied Fracture Mechanics, 106, 102500(2020) [13] ZHOU, X. P., HUANG, X. C., and BERTO, F. A three-dimensional long-term strength criterion of rocks based on micromechanical method. Theoretical and Applied Fracture Mechanics, 97, 409–418(2018) [14] DUAN, J. B., LEI, Y. J., and LI, D. K. Fracture analysis of linear viscoelastic materials using triangular enriched crack tip elements. Finite Elements in Analysis and Design, 47(10), 1157–1168(2011) [15] TOOLABI, M., FALLAH, A. S., BAIZ, P. M., and LOUCA, L. A. Dynamic analysis of a viscoelastic orthotropic cracked body using the extended finite element method. Engineering Fracture Mechanics, 109, 17–32(2013) [16] HOU, J. L., ZHANG, C., and LI, Q. The concept and numerical evaluation of M-integral based on domain integral method in cracked viscoelastic materials. Mechanics of Materials, 145, 103363(2020) [17] HE, J., LIU, Q. S., and WU, Z. J. Creep crack analysis of viscoelastic material by numerical manifold method. Engineering Analysis with Boundary Elements, 80, 72–86(2017) [18] SHEN, R. L., WAISMAN, H., and GUO, L. C. Fracture of viscoelastic solids modeled with a modified phase field method. Computer Methods in Applied Mechanics and Engineering, 346, 862–890(2019) [19] BUI, T. Q. and HU, X. F. A review of phase-field models, fundamentals and their applications to composite laminates. Engineering Fracture Mechanics, 248, 107705(2021) [20] ZHAN, R. T., LI, Z. X., and WANG, L. A fractional differential constitutive model for dynamic stress intensity factors of an anti-plane crack in viscoelastic materials. Acta Mechanica Sinica, 30(3), 403–409(2014) [21] PENG, Y., ZHAO, J. Z., SEPEHRNOORI, K., LI, Z. L., and XU, F. Study of delayed creep fracture initiation and propagation based on semi-analytical fractional model. Applied Mathematical Modelling, 72, 700–715(2019) [22] PENG, Y., ZHAO, J. Z., SEPEHRNOORI, K., and LI, Z. L. Fractional model for simulating the viscoelastic behavior of artificial fracture in shale gas. Engineering Fracture Mechanics, 228, 106892(2020) [23] DING, X., ZHANG, F., ZHANG, G. Q., YANG, L., and SHAO, J. F. Modeling of hydraulic fracturing in viscoelastic formations with the fractional Maxwell model. Computers and Geotechnics, 126, 103723(2020) [24] YAO, W. A., ZHONG, W. X., and LIM, C. W. Symplectic Elasticity, World Scientific, Singapore (2009) [25] LIM, C. W. and XU, X. S. Symplectic elasticity: theory and applications. Applied Mechanics Reviews, 63(5), 050802(2011) [26] HU, W. P., YIN, T. T., ZHENG, W., and DENG, Z. C. Symplectic analysis on orbit-attitude coupling dynamic problem of spatial rigid rod. Journal of Vibration and Control, 26, 1614–1624(2020) [27] LIM, C. W., LYU, C. F., XIANG, Y., and YAO, W. On new symplectic elasticity approach for exact free vibration solutions of rectangular Kirchhoff plates. International Journal of Engineering Science, 47(1), 131–140(2009) [28] LI, R., ZHENG, X. R., YANG, Y. S., HUANG, M. Q., and HUANG, X. W. Hamiltonian system-based new analytic free vibration solutions of cylindrical shell panels. Applied Mathematical Modelling, 76, 900–917(2019) [29] ZHANG, W. X., BAI, Y., WANG, J. W., and CHEN, L. Symplectic system analysis for finite sector plates of viscoelastic media. International Journal of Engineering Science, 79, 30–43(2014) [30] ZHAO, L., CHEN, W. Q., and LU, C. F. Two-dimensional complete rational analysis of functionally graded beams within the symplectic framework. Applied Mathematics and Mechanics (English Edition), 33(10), 1143–1155(2012) https://doi.org/10.1007/s10483-012-1617-8 [31] XU, X. S., TONG, Z. Z., RONG, D. L., CHENG, X. H., XU, C. H., and ZHOU, Z. H. Fracture analysis of magnetoelectroelastic bimaterials with imperfect interfaces by symplectic expansion. Applied Mathematics and Mechanics (English Edition), 38(8), 1043–1058(2017) https://doi.org/10.1007/s10483-017-2222-9 [32] XU, X. S., CHENG, X. H., ZHOU, Z. H., and XU, C. H. An analytical approach for the mixed-mode crack in linear viscoelastic media. European Journal of Mechanics A/Solids, 52, 12–25(2015) [33] HU, X. F., SHEN, Q. S., WANG, J. N., YAO, W. A., and YANG, S. T. A novel size independent symplectic analytical singular element for inclined crack terminating at bimaterial interface. Applied Mathematical Modelling, 50, 361–379(2017) [34] WANG, J. S. and QIN, Q. H. Symplectic model for piezoelectric wedges and its application in analysis of electroelastic singularities. Philosophical Magazine, 87(2), 225–251(2007) [35] YAO, W. A., LI, X., and HU, X. F. Viscoelastic crack analysis using symplectic analytical singular element combining with precise time-domain algorithm. International Journal of Fracture, 214(1), 29–48(2018) [36] LI, X., YAO, W. A., HU, X. F., and JIN, Q. L. Interfacial crack analysis between dissimilar viscoelastic media using symplectic analytical singular element. Engineering Fracture Mechanics, 219, 106628(2019) [37] YU, Y., PERDIKARIS, P., and KARNIADAKIS, G. E. Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysms. Journal of Computational Physics, 323, 219–242(2016) [38] RICE, J. R. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics, 35(2), 379–386(1968) [39] STEHFEST, H. Algorithm 368: numerical inversion of Laplace transforms. Communications of the ACM, 13(1), 47–49(1970) [40] SYNGELLAKIS, S. and WU, J. W. Evaluation of polymer fracture parameters by the boundary element method. Engineering Fracture Mechanics, 75(5), 1251–1265(2008) |