[1] DENG, X. G. and ZHANG, H. X. Developing high-order weighted compact nonlinear schemes. Journal of Computational Physics, 165, 22-44(2000) [2] DENG, X. G., LIU, X., MAO, M. L., and ZHANG, H. X. Advances in high-order accurate weighted compact nonlinear schemes. Advances in Mechanics, 37(3), 417-427(2007) [3] DENG, X. G. High-order accurate dissipative weighted compact nonlinear schemes. Science in China (Series A), 45(3), 356-370(2002) [4] NONOMURA, T. and FUJII, K. Effects of difference scheme type in high-order weighted compact nonlinear schemes. Journal of Computational Physics, 228, 3533-3539(2009) [5] NONOMURA, T., GOTO, Y., and FUJII, K. Improvements of efficiency in seventh-order weighted compact nonlinear scheme. 6th Asia Workshop on Computational Fluid Dynamics, Tokyo, Japan, AW6-16(2010) [6] NONOMURA, T., IIZUKA, N., and FUJII, K. Freestream and vortex preservation properties of high-order WENO and WCNS on curvilinear grids. Computers and Fluids, 39(2), 197-214(2010) [7] DENG, X. G., MAO, M. L., TU, G. H., LIU, H. Y., and ZHANG, H. X. Geometric conservation law and applications to high-order finite difference schemes with stationary grids. Journal of Computational Physics, 230(4), 1100-1115(2011) [8] DENG, X. G., MIN, Y. B., MAO, M. L., LIU, H. Y., TU, G. H., and ZHANG, H. X. Further studies on geometric conservation law and applications to high-order finite difference schemes with stationary grids. Journal of Computational Physics, 239, 90-111(2013) [9] ZHAO, G. Y., SUN, M. B., XIE, S. B., and WANG, H. B. Numerical dissipation control in an adaptive WCNS with a new smoothness indicator. Applied Mathematics and Computation, 330, 239-253(2018) [10] ZHANG, X. X. and SHU, C. W. On maximum-principle-satisfying high order schemes for scalar conservation laws. Journal of Computational Physics, 229, 3091-3120(2010) [11] ZHANG, X. X. and SHU, C. W. Maximum-principle-satisfying and positivity-preserving highorder schemes for conservation laws:survey and new developments. Proceedings of the Royal Society A, 467, 2752-2776(2011) [12] ZHANG, X. X., XIA, Y. H., and SHU, C. W. Maximum-principle-satisfying and positivitypreserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes. Journal of Scientific Computing, 50, 29-62(2012) [13] ZHANG, X. X. and SHU, C. W. On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. Journal of Computational Physics, 229, 8918-8934(2010) [14] ZHANG, X. X. and SHU, C. W. Positivity-preserving high order finite difference WENO schemes for compressible Euler equations. Journal of Computational Physics, 231, 2245-2258(2012) [15] XU, Z. F. Parametrized maximum principle preserving flux limiters for high order schemes solving hyperbolic conservation laws:one-dimensional scalar problem. Mathematics of Computation, 83, 2213-2238(2014) [16] XIONG, T., QIU, J. M., and XU, Z. F. A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows. Journal of Computational Physics, 252, 310-331(2013) [17] XIONG, T., QIU, J. M., and XU, Z. F. Parametrized positivity preserving flux limiters for the high order finite difference WENO scheme solving compressible Euler equations. Journal of Scientific Computing, 67, 1066-1088(2016) [18] YANG, P., XIONG, T., QIU, J. M., and XU, Z. F. High order maximum principle preserving finite volume method for convection dominated problems. Journal of Scientific Computing, 67(2), 795-820(2016) [19] CHRISTLIEB, A. J., LIU, Y., TANG, Q., and XU, Z. F. High order parametrized maximumprinciple-preserving and positivity-preserving WENO schemes on unstructured meshes. Journal of Computational Physics, 281, 334-351(2015) [20] SHU, C. W. and OSHER, S. Efficient implementation of essentially non-oscillatory shock capturing schemes. Journal of Computational Physics, 77, 439-471(1988) [21] XIONG, T., QIU, J. M., XU, Z. F., and CHRISTLIB, A. High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation. Journal of Computational Physics, 273, 618-639(2014) [22] GUO, Y., XIONG, T., and SHI, Y. A positivity preserving high order finite volume compactWENO scheme for compressible Euler equations. Journal of Computational Physics, 274, 505-523(2014) |