[1] FOURIER, J. B. J. Theorie Analytique de la Chaleur, Chez Firmin Didot, Paris (1822) [2] CATTANEO, C. Sulla conduzionedelcalore. Atti del Seminario Matematico e Fisico dell Universita di Modena e Reggio Emilia, 3, 83-101(1948) [3] CHRISTOV, C. I. On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mechanics Research Communications, 36, 481-486(2009) [4] KHAN, W. A., KHAN, M., and ALSHOMRANI, A. S. Impact of chemical processes on 3D Burgers fluid utilizing Cattaneo-Christov double-diffusion:applications of non-Fourier's heat and non-Fick's mass flux models. Journal of Molecular Liquids, 223, 1039-1047(2016) [5] ACHARYA, N., DAS, K., and KUNDU, P. K. Cattaneo-Christov intensity of magnetised upperconvected Maxwell nanofluid flow over an inclined stretching sheet:a generalised Fourier and Fick's perspective. International Journal of Mechanical Sciences, 130, 167-173(2017) [6] LIU, L., ZHENG, L., LIU, F., and ZHANG, X. Heat conduction with fractional Cattaneo-Christov upper-convective derivative flux model. International Journal of Thermal Sciences, 112, 421-426(2017) [7] NADEEM, S., AHMAD, S., and MUHAMMAD, N. Cattaneo-Christov flux in the flow of a viscoelastic fluid in the presence of Newtonian heating. Journal of Molecular Liquids, 237, 180-184(2017) [8] FAROOQ, M., AHMAD, S., JAVED, M., and ANJUM, A. Analysis of Cattaneo-Christov heat and mass fluxes in the squeezed flow embedded in porous medium with variable mass diffusivity. Results in Physics, 7, 3788-3796(2017) [9] ZHANG, Y., YUAN, B., BAI, Y., CAO, Y., and SHEN, Y. Unsteady Cattaneo-Christov double diffusion of Oldroyd-B fluid thin film with relaxation-retardation viscous dissipation and relaxation chemical reaction. Powder Technology, 338, 975-982(2018) [10] MASOOD, S., FAROOQ, M., AHMAD, S., ANJUM, A., and MIR, N. A. Investigation of viscous dissipation in the nanofluid flow with a Forchheimer porous medium:modern transportation of heat and mass. European Physical Journal Plus, 134, 178(2019) [11] CRANE, L. J. Flow past a stretching plate. Journal of Applied Mathematics and Physics (ZAMP), 21, 645-647(1970) [12] METRI, P. G., METRI, P. G., ABEL, S., and SILVESTROV, S. Heat transfer in MHD mixed convection viscoelastic fluid flow over a stretching sheet embedded in a porous medium with viscous dissipation and non-uniform heat source/sink. Procedia Engineering, 157, 309-316(2016) [13] MAHMOOD, S., CHEN, B., and GHAFFARI, A. Hydromagnetic Hiemenz flow of micropolar fluid over a nonlinearly stretching/shrinking sheet:dual solutions by using Chebyshev spectral Newton iterative scheme. Journal of Magnetism and Magnetic Materials, 416, 329-334(2016) [14] HAYAT, T., KHAN, M. I., FAROOQ, M., ALSAEDI, A., WAQAS, M., and YASMEEN, T. Impact of Cattaneo-Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. International Journal of Heat and Mass Transfer, 99, 702-710(2016) [15] KUMAR, K. G., GIREESHA, B. J., RUDRASWAMY, N. G., and MANJUNATHA, S. Radiative heat transfers of Carreau fluid flow over a stretching sheet with fluid particle suspension and temperature jump. Results in Physics, 7, 3976-3983(2017) [16] KHAN, M. I., WAQAS, M., HAYAT, T., and ALSAEDI, A. A comparative study of Casson fluid with homogeneous-heterogeneous reactions. Journal of Colloid and Interface Science, 498, 85-90(2017) [17] KHAN, M., AHMAD, J., and AHMAD, L. Chemically reactive and radiative von Kármán swirling flow due to a rotating disk. Applied Mathematics and Mechanics (English Edition), 39(9), 1295-1310(2018) https://doi.org/10.1007/s10483-018-2368-9 [18] GHADIKOLAEI, S. S., HOSSEINZADEH, K., YASSARI, M., SADEGHI, H., and GANJI, D. D. Analytical and numerical solution of non-Newtonian second-grade fluid flow on a stretching sheet. Thermal Science and Engineering Progress, 5, 309-316(2018) [19] WAQAS, H., IMRAN, M., KHAN, S. U., SHEHZAD, S. A., and MERAJ, M. A. Slip flow of Maxwell viscoelasticity-based micropolar nanoparticles with porous medium:a numerical study. Applied Mathematics and Mechanics (English Edition), 40(9), 1255-1268(2019) https://doi.org/10.1007/s10483-019-2518-9 [20] SUN, X., WANG, S., and ZHAO, M. Numerical solution of oscillatory flow of Maxwell fluid in a rectangular straight duct. Applied Mathematics and Mechanics (English Edition), 40(11), 1647-1656(2019) https://doi.org.10.1007/s10483-019-2535-6 [21] MUHAMMAD, R., KHAN, M. I., KHAN, N. B., and JAMEEL, M. Magnetohydrodynamics (MHD) radiated nanomaterial viscous material flow by a curved surface with second order slip and entropy generation. Computer Methods and Programs in Biomedicine, 189, 105294(2020) [22] MUHAMMAD, R., KHAN, M. I., JAMEEL, M., and KHAN, N. B. Fully developed DarcyForchheimer mixed convective flow over a curved surface with activation energy and entropy generation. Computer Methods and Programs in Biomedicine, 188, 105298(2020) [23] NAG, P., MOLLA, M. M., and HOSSAIN, M. A. Non-Newtonian effect on natural convection flow over cylinder of elliptic cross section. Applied Mathematics and Mechanics (English Edition), 41(2), 361-382(2020) https://doi.org/10.1007/s10483-020-2562-8 [24] IBRAHIM, M. and KHAN, M. I. Mathematical modeling and analysis of SWCNT-water and MWCNT-water flow over a stretchable sheet. Computer Methods and Programs in Biomedicine, 187, 105222(2020) [25] FANG, T. G. and WANG, F. J. Momentum and heat transfer of a special case of the unsteady stagnation-point flow. Applied Mathematics and Mechanics (English Edition), 41(1), 51-82(2020) https://doi.org/10.1007/s10483-020-2556-9 [26] WAQAS, M. A mathematical and computational framework for heat transfer analysis of ferromagnetic non-Newtonian liquid subjected to heterogeneous and homogeneous reactions. Journal of Magnetism and Magnetic Materials, 493, 165646(2020) [27] NAZEER, M., AHMAD, F., SALEEM, A., SAEED, M., NAVEED, S., SHAHEEN, M., and AIDAROUS, E. A. Effects of constant and space dependent viscosity on Eyring-Powell fluid in a pipe:comparison of perturbation and explicit finite difference method. Zeitschrift für Naturforschung A, 47, 961-969(2019) [28] HSIAO, K. L. MHD mixed convection for viscoelastic fluid past a porous wedge. International Journal of Non-Linear Mechanics, 46, 1-8(2011) [29] WAQAS, M. Simulation of revised nanofluid model in the stagnation region of cross fluid by expanding-contracting cylinder. International Journal of Numerical Methods for Heat and Fluid Flow (2019) https://doi.org/10.1108/HFF-12-2018-0797 [30] ALI, N., NAZEER, F., and NAZEER, M. Flow and heat transfer analysis of Eyring-Powell fluid in a pipe. Zeitschrift für Naturforschung A, 73, 265-274(2018) [31] AKBAR, N. S., EBAID, A., and KHAN, Z. H. Numerical analysis of magnetic field effects on Eyring-Powell fluid flow towards a stretching sheet. Journal of Magnetism and Magnetic Materials, 382, 355-358(2015) [32] BILAL, S., MALIK, M. Y., AWAIS, M., REHMAN, K. U., HUSSAIN, A., and KHAN, I. Numerical investigation on 2D viscoelastic fluid due to exponentially stretching surface with magnetic effects:an application of non-Fourier flux theory. Neural Computing and Applications, 30, 2749-2758(2018) [33] FATHIZADEH, M., MADANI, M., KHAN, Y., FARAZ, N., YILDIRIM, A., and TUTKUN, S. An effective modification of the homotopy perturbation method for MHD viscous flow over a stretching sheet. Journal of King Saud University-Science, 25, 107-113(2013) |