[1] HERBERT, T. Parabolized stability equations. Annual Review of Fluid Mechanics, 29(1), 245-283(1997) [2] RUDMAN, S. and RUBIN, S. G. Hypersonic viscous flow over slender bodies with sharp leading edges. AIAA Journal, 6(10), 1883-1890(1968) [3] ZHANG, Y. M. and ZHOU, H. Verification of parabolized stability equations for its application to compressible boundary layers. Applied Mathematics and Mechanics (English Edition), 28(8),987-998(2007) https://doi.org/10.1007/s10483-007-0801-3 [4] HAJ-HAFIRI, H. Characteristics analysis of the parabolic stability equations. Studies in Applied Mathematics, 92(1), 41-53(1994) [5] LI, M. J. and GAO, Z. Analysis and application of ellipticity of stability equations on fluid mechanics. Applied Mathematics and Mechanics (English Edition), 24(11), 1334-1341(2003) https://doi.org/10.1007/BF02439657 [6] JEFFREY, D. Z. Interfacial Instability, Encyclopedia of Microfluidics and Nanofluidics, Springer, Boston, 866-871(2008) [7] COWLEY, M. D. and ROSENSWEIG, R. E. The interfacial stability of a ferromagnetic fluid. Journal of Fluid Mechanics, 30(4), 671-688(1967) [8] ZELAZO, R. E. and MELCHER, J. R. Dynamics and stability of ferrofluids:surface interactions. Journal of Fluid Mechanics, 39(1), 1-24(1969) [9] ANJALI-DEVI, S. P. and HEMAMALINI, P. T. Nonlinear Rayleigh-Taylor instability of two superposed magnetic fluids under parallel rotation and a normal magnetic field. Journal of Magnetism and Magnetic Materials, 314(2), 135-139(2006) [10] XU, H., LOMBARD, J. E. W., and SHERWIN, S. J. Influence of localised smooth steps on the instability of a boundary layer. Journal of Fluid Mechanics, 817(1), 138-170(2017) [11] YAGHOOBI, A. and SHADMEHRI, M. Magnetic Rayleigh-Taylor instability in radiative flows. Monthly Notices of the Royal Astronomical Society, 477(1), 412-420(2018) [12] CARVALHO, D. D. and GONTIJO, R. G. Magnetization diffusion in duct flow:the magnetic entrance length and the interplay between hydrodynamic and magnetic timescales. Physics of Fluids, 32(7), 072007(2020) [13] BALLA, M., TRIPATHI, M. K., and SAHU, K. C. Shape oscillations of a nonspherical water droplet. Physical Review E, 99(2), 023107(2019) [14] SUN, D. L. and TAO, W. Q. A coupled volume-of-fluid and level set (VOSET) method for computing incompressible two-phase flows. International Journal of Heat and Mass Transfer, 53(4), 645-655(2010) [15] TRIPATHI, M. K., SAHU, K. C., and GOVINDARAJAN, R. Dynamics of an initially spherical bubble rising in quiescent liquid. Nature Communications, 6, 6268(2015) [16] ZHANG, T. W., WU, J., and LIN, X. J. An interface-compressed diffuse interface method and its application for multiphase flows. Physics of Fluids, 31(12), 122102(2019) [17] ZHANG, T. W., WU, J., and LIN, X. J. Numerical investigation on formation andmotion of bubble or droplet in quiescent flow. Physics of Fluids, 32(3), 032106(2020) [18] YAMAGUCHI, H. Engineering Fluid Mechenics, Springer, Netherlands, 497-503(2008) [19] CRAVERO, I., PUPPO, G., SEMPLICE, M., and VISCONTI, G. Cool WENO schemes. Computers and Fluids, 169, 71-86(2018) [20] GLIMM, J., MARCHESIN, D., and MCBRYAN, O. Subgrid resolution of fluid discontinuities, II. Journal of Computational Physics, 37(3), 336-354(1980) [21] WANG, C. W., LIU, T. G., and KHOO, B. C. A real ghost fluid method for the simulation of compressible flow. SIAM Journal on Scientific Computing, 28(1), 278-302(2006) [22] LIU, T. G., KHOO, B. C., and YEO, K. S. Ghost fluid method for strong shock impacting on interface. Journal of Computational Physics, 190(2), 651-681(2003) [23] LI, F. C., OISHI, M., KAWAGUCHI, Y., OSHIMA, N., and OSHIMA, M. Experimental study on symmetry breaking in a swirling free-surface cylinder flow influenced by viscoelasticity. Experimental Thermal and Fluid Science, 31(3), 237-248(2006) |