[1] XU, Y. M., LI, H. G., YANG, Y. F., HU, Y. B., and TAO, J. Determination of residual stresses in Ti/CFRP laminates after preparation using multiple methods. Composite Structures, 210, 715-723(2019) [2] LI, H. G., XU, Y. W., HUA, X. G., LIU, C., and TAO, J. Bending failure mechanism and flexural properties of GLARE laminates with different stacking sequences. Composite Structures, 187, 354-363(2018) [3] AMIRI, A., MOHAMMADIMEHR, M., and ANVARI, M. Stress and buckling analysis of a thickwalled micro sandwich panel with a flexible foam core and carbon nanotube reinforced composite (CNTRC) face sheets. Applied Mathematics and Mechanics (English Edition), 41(7), 1027-1038(2020) https://doi.org/10.1007/s10483-020-2627-7 [4] ZHOU, H. Y., JIA, K. C., WANG, X. J., XIONG, M. X., and WANG, Y. H. Experimental and numerical investigation of low velocity impact response of foam concrete filled auxetic honeycombs. Thin-Walled Structures, 154, 106898(2020) [5] JING, L., LIU, K., SU, X. Y., and GUO, X. Experimental and numerical study of square sandwich panels with layered-gradient foam cores to air-blast loading. Thin-Walled Structures, 161, 107445(2021) [6] LU, Z. X., HUANG, J. X., and YUAN, Z. S. Effects of microstructure on uniaxial strength asymmetry of open-cell foams. Applied Mathematics and Mechanics (English Edition), 36(1), 37-46(2015) https://doi.org/10.1007/s10483-015-1893-9 [7] XIANG, X. M., ZOU, S. M., HA, N. S., LU, G. X., and KONG, I. Energy absorption of bio-inspired multi-layered graded foam-filled structures under axial crushing. Composites Part B:Engineering, 198, 108216(2020) [8] ZHANG, J. X., QIN, Q. H., XIANG, C. P., and WANG, T. J. Plastic analysis of multilayer sandwich beams with metal foam cores. Acta Mechanica, 227(9), 2477-2491(2016) [9] ZHANG, J., QIN, Q., AI, W., WANG, Z., and WANG, T. J. Indentation of metal foam core sandwich beams:experimental and theoretical investigations. Experimental Mechanics, 56(5), 771-784(2016) [10] AFHBY, M. F., EVANS, A. G., FLECK, N. A., GIBSON, L. J., HUTCHINSON, J. W., and WADLEY, H. N. G. Metal Foams:a Design Guide, Butterworth-Heinemann, Boston, MA (2000) [11] HALL, I. W., GUDEN, M., and CLAAR, T. D. Transverse and longitudinal crushing of aluminumfoam filled tubes. Scripta Materialia, 46, 513-518(2002) [12] NIKNEJAD, A., ELAHI, S. A., and LIAGHAT, G. H. Experimental investigation on the lateral compression in the foam-filled circular tubes. Materials & Design, 36, 24-34(2012) [13] NIKNEJAD, A., ASSAEE, H., ELAHI, S. A., and GOLRIZ, A. Flattening process of empty and polyurethane foam-filled E-glass/vinylester composite tubes-an experimental study. Composite Structures, 100, 479-492(2013) [14] FANG, J. G., GAO, Y. K., SUN, G. Y., ZHANG, Y. T., and LI, Q. Parametric analysis and multiobjective optimization for functionally graded foam-filled thin-wall tube under lateral impact. Computational Materials Science, 90, 265-275(2014) [15] NIKNEJAD, A. and RAHMANI, D. M. Experimental and theoretical study of the lateral compression process on the empty and foam-filled hexagonal columns. Materials & Design, 53, 250-261(2014) [16] YAN, L. B., CHOUW, N., and JAYARAMAN, K. Lateral crushing of empty and polyurethanefoam filled natural flax fabric reinforced epoxy composite tubes. Composites Part B:Engineering, 63, 15-26(2014) [17] ELAHI, S. A., ROUZEGAR, J., NIKNEJAD, A., and ASSAEE, H. Theoretical study of absorbed energy by empty and foam-filled composite tubes under lateral compression. Thin-Walled Structures, 114, 1-10(2017) [18] SU, M. M., WANG, H., and HAO, H. Axial and radial compressive properties of aluminaaluminum matrix syntactic foam filled thin-walled tubes. Composite Structures, 226, 111197(2019) [19] ZHANG, B. Y., WANG, L., ZHANG, J., JIANG, Y. X., WANG, W., and WU, G. H. Deformation and energy absorption properties of cenosphere/aluminum syntactic foam-filled circular tubes under lateral quasi-static compression. International Journal of Mechanical Sciences, 192, 106126(2021) [20] ZHU, G. H., ZHAO, Z. H., HU, P., LUO, G., ZHAO, X., and YU, Q. On energy-absorbing mechanisms and structural crashworthiness of laterally crushed thin-walled structures filled with aluminum foam and CFRP skeleton. Thin-Walled Structures, 160, 107390(2021) [21] AN, X. Z., GAO, Y. K., FANG, J. G., SUN, G. Y., and LI, Q. Crashworthiness design for foam-filled thin-walled structures with functionally lateral graded thickness sheets. Thin-Walled Structures, 91, 63-71(2015) [22] SHIRAVAND, A. and ASGARI, M. Hybrid metal-composite conical tubes for energy absorption; theoretical development and numerical simulation. Thin-Walled Structures, 145, 106442(2019) [23] MAMSOR, M. A., AHMAD, Z., and ABDULLAH, M. R. Experimental studies on the impact characteristics of seamless fibre metal laminate (FML) tubes. Materials Today:Proceedings, 39, 1077-1081(2021) [24] JONES, N. Note on the impact behaviour of fibre-metal laminates. International Journal of Impact Engineering, 108, 147-152(2017) [25] ZHANG, J. X., QIN, Q. H., YANG, Y., YU, X. H., XIE, S. J., and WANG, T. J. Dynamic response of foam-filled rectangular tubes subjected to low-velocity impact. International Journal of Applied Electromagnetics and Mechanics, 59(4), 1441-1449(2019) [26] TAGARIELLI, V. L., FLECK, N. A., and DESHPANDE, V. S. Collapse of clamped and simply supported composite sandwich beams in three-point bending. Composites Part B:Engineering, 35(6-8), 523-534(2004) [27] DESHPANDE, V. S. and FLECK, N. A. Isotropic constitutive models for metallic foams. Journal of the Mechanics and Physics of Solids, 48(6-7), 1253-1283(2000) |