Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (1): 1-14.doi: https://doi.org/10.1007/s10483-024-3068-9
• Articles • Next Articles
Received:
2023-06-23
Online:
2024-01-01
Published:
2023-12-26
Contact:
Jianxun ZHANG
E-mail:jianxunzhang@mail.xjtu.edu.cn
Supported by:
2010 MSC Number:
Jianxun ZHANG, Jinwen BAI. A novel efficient energy absorber with free inversion of a metal foam-filled circular tube. Applied Mathematics and Mechanics (English Edition), 2024, 45(1): 1-14.
1 | WANG, W., and QIU, X. M. Analysis of the carrying capacity for tubes under oblique loading. Journal of Applied Mechanics, 85 (3), 031010 (2018) |
2 | ZHANG, J. X., and GUO, H. Y. Large deflection of rectangular sandwich tubes with metal foam core. Composite Structures, 293, 115745 (2022) |
3 |
TANG, Y., XU, J. Y., and YANG, T. Z. Natural dynamic characteristics of a circular cylindrical Timoshenko tube made of three-directional functionally graded material. Applied Mathematics and Mechanics (English Edition), 43 (4), 479- 496 (2022)
doi: 10.1007/s10483-022-2839-6 |
4 | DING, J. N., REN, Q. X., WANG, Q. H., YU, J. H., and LI, Y. J. Axial compressive performance of square concrete-encased concrete-filled double-skin steel tube stub columns. Engineering Structures, 276, 115389 (2023) |
5 | ZHANG, J. X., DU, J. L., YUAN, H., and SUN, H. Plastic behavior of circular sandwich tubes considering the effect of local denting. Thin-Walled Structures, 175, 109268 (2022) |
6 | SONG, Z. B., MIMG, S. Z., DU, K. F., FENG, S. J., ZHOU, C. H., HAO, P., XU, S. L., and WANG, B. A novel equivalent method for crashworthiness analysis of composite tubes. Composites Part A-Applied Science and Manufacturing, 153, 106761 (2022) |
7 |
GUO, X. M., XIAO, C. L., MA, H., LI, H., ZHANG, X. F., and WEN, B. C. Improved frequency modeling and solution for parallel liquid-filled pipes considering both fluid-structure interaction and structural coupling. Applied Mathematics and Mechanics(English Edition), 43 (8), 1269- 1288 (2022)
doi: 10.1007/s10483-022-2883-9 |
8 | ZHANG, J. X., YE, Y., ZHU, Y. Q., YUAN, H., QIN, Q. H., and WANG, T. J. On axial splitting and curling behaviour of circular sandwich metal tubes with metal foam core. International Journal of Solids and Structures, 202, 111- 125 (2020) |
9 | YE, J. H., ZHAO, X. L., BINH, D. V., and AL-MAHAIDI, R. Plastic mechanism analysis of fabricated square and triangular sections under axial compression. Thin-Walled Structures, 45 (2), 135- 148 (2007) |
10 | XIANG, X. M., ZOU, S. M., HA, N. S., LU, G. X., and KONG, I. Energy absorption of bio-inspired multi-layered graded foam-filled structures under axial crushing. Composites Part B, 198, 108216 (2020) |
11 | KARRECH, A., and SEIBI, A. Analytical model for the expansion of tubes under tension. Journal of Materials Processing Technology, 210 (2), 356- 362 (2010) |
12 | KOBAYASHI, S. Approximate solutions for preform design in shell nosing. International Journal of Machine Tools and Manufacture, 23 (2-3), 111- 122 (1983) |
13 | ZHANG, J. X., DU, J. L., GUO, H. Y., YUAN, H., and QIN, Q. H. Splitting and curling performance of metal foam-filled circular tubes. Acta Mechanica, 233, 535- 559 (2022) |
14 | REDDY, T. J., NARAYANAMURTHY, V., and RAO, Y. V. D. Evolution of a new geometric profile for an ideal tube inversion for crash energy absorption. International Journal of Mechanical Sciences, 155, 125- 142 (2019) |
15 | AKTAY, L., TOKSOY, A. K., and GÜDEN, M. Quasi-static axial crushing of extruded polystyrene foam-filled thin-walled aluminum tubes: experimental and numerical analysis. Materials & Design, 27 (7), 556- 565 (2006) |
16 | GUIST, L. R. and MARBLE, D. P. Prediction of the Inversion Load of a Circular Tube, NASA TN-D-3622 (1966) |
17 | AL-HASSANI, S. T. S., JOHNSON, W., and LOWE, W. T. Characteristics of inversion tubes under axial loading. Journal of Mechanical Engineering Science, 14 (6), 370- 381 (1972) |
18 | KINKEAD, A. N. Analysis for inversion load and energy absorption of a circular tube. Journal of Strain Analysis Engineering Design, 18 (3), 177- 188 (1983) |
19 | SCHMOECKEL, D., SKIADAS, A., and MAZILU, P. Analytical description and FE-simulation of the tube inverse pressing. CIRP Annals, 38 (1), 275- 278 (1989) |
20 | MISCOW, F. P. C., and AL-QURESHI, H. A. Mechanics of static and dynamic inversion processes. International Journal of Mechanical Sciences, 39 (2), 147- 161 (1997) |
21 | ROSA, P. A. R., BAPTISTA, R. M. O., RODRIGUES, J. M. C., and MARTINS, P. A. F. An investigation on the external inversion of thin-walled tubes using a die. International Journal of Plasticity, 20 (10), 1931- 1946 (2004) |
22 | ROSA, P. A. R., RODRIGUES, J. M. C., and MARTINS, P. A. F. Internal inversion of thin-walled tubes using a die: experimental and theoretical investigation. International Journal of Machine Tools and Manufacture, 44 (7-8), 775- 784 (2004) |
23 | ROSA, P. A. R., RODRIGUES, J. M. C., and MARTINS, P. A. F. Invert-forming of thin-walled tubes using a die. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 220 (1), 35- 41 (2006) |
24 | SUN, Z. C., and YANG, H. Development of a finite element simulation system for the tube axial compressive precision forming process. International Journal of Machine Tools and Manufacture, 42 (1), 15- 20 (2002) |
25 | SUN, Z. C., and YANG, H. Free deformation mechanism and change of forming mode in tube inversion under conical die. Journal of Materials Processing Technology, 177 (1-3), 171- 174 (2006) |
26 | SUN, Z. C., YANG, H., LIU, Y. L., and JIN, Y. J. Experimental study of the tube axial compression forming process with free dieless deformation. Journal of Materials Processing Technology, 105 (1-2), 191- 195 (2000) |
27 | LIU, Y. Z., QIU, X. M., and YU, T. X. A theoretical model of the inversion tube over a conical die. Thin-Walled Structures, 127, 31- 39 (2018) |
28 | YU, X. H., QIU, X. M., and YU, T. X. Analysis of the free external inversion of circular tubes based on deformation theory. International Journal of Mechanical Sciences, 100, 262- 268 (2015) |
29 | QIU, X. M., YU, X. H., LI, Y. L., and YU, T. X. The deformation mechanism analysis of a circular tube under free inversion. Thin-Walled Structures, 107, 49- 56 (2016) |
30 | YU, X. H., QIU, X. M., and YU, T. X. Theoretical model of a metal tube under inversion over circular dies. International Journal of Mechanical Sciences, 108-109, 23- 28 (2016) |
31 | MAGRINHOA, J. P., CENTENOB, G., SILVA, M. B., VALLELLANO, C., and MARTINS, P. A. F. On the formability limits of thin-walled tube inversion using different die fillet radii. Thin-Walled Structures, 144, 106328 (2019) |
32 | REDDY, T. Y., and WALL, R. J. Axial compression of foam-filled thin-walled circular tubes. International Journal of Impact Engineering, 7 (2), 151- 166 (1988) |
33 | SANTOSA, S. Crash behavior of box columns filled with aluminum honeycomb or foam. Computers & Structures, 68 (4), 343- 367 (1988) |
34 | WANG, W., WANG, Y. J., ZHAO, Z., TONG, Z. Z., XU, X. S., and LIM, C. W. Numerical simulation and experimental study on energy absorption of foam-filled local nanocrystallized thin-walled tubes under axial crushing. Materials, 15 (16) (5556) |
35 | DUARTE, I., KRSTULOVIĆ-OPARA, L., DIAS-DE-OLIVEIRA, J., and VESENJAK, M. Axial crush performance of polymer-aluminium alloy hybrid foam filled tubes. Thin-Walled Structures, 138, 124- 136 (2019) |
36 | YALÇÍN, M. M., and GENEL, K. On the axial deformation characteristic of PVC foam-filled circular aluminium tube: effect of radially-graded foam filling. Thin-Walled Structures, 144, 106335 (2019) |
37 | ZHANG, J. X., YE, Y., YUAN, H., QIN, Q. H., and WANG, T. J. A theoretical study of low-velocity impact of metal foam-filled circular tubes. Thin-Walled Structures, 148, 106525 (2020) |
38 | GUO, H. Y., ZHANG, J. X., LI, J. F., YUAN, H., and ZHU, Y. Q. Splitting and curling collapse of square sandwich metal tube with aluminum foam core under axial low-velocity impact. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44, 514 (2022) |
39 | DESHPANDE, V. S., and FLECK, N. A. Isotropic constitutive models for metallic foams. Journal of the Mechanics and Physics of Solids, 48 (6-7), 1253- 1283 (2000) |
[1] | Jianxun ZHANG, Haoyuan GUO. Low-velocity impact of rectangular foam-filled fiber metal laminate tubes [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(12): 1733-1742. |
[2] | Yijie BIAN, Puhao LI, Fan YANG, Peng WANG, Weiwei LI, Hualin FAN. Deformation mode and energy absorption of polycrystal-inspired square-cell lattice structures [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(10): 1561-1582. |
[3] | Jiren XUE, Yewei ZHANG, Hu DING, Liqun CHEN. Vibration reduction evaluation of a linear system with a nonlinear energy sink under a harmonic and random excitation [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(1): 1-14. |
[4] | ZHANG Yong-bin. Boundary slippage for generating hydrodynamic load-carrying capacity [J]. Applied Mathematics and Mechanics (English Edition), 2008, 29(9): 1155-1164 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||