[1] WANG, Z. L. Piezotronics and Piezo-phototronics, The Science Publishing Company, Beijing (2014) [2] ZHU, G., YANG, R. S., WANG, S. H., and WANG Z. L. Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Letters, 10, 3151-3155(2010) [3] WANG, L. F. and WANG, Z. L. Advances in piezotronic transistors and piezotronics. Nano Today, 37, 101108(2021) [4] GAO, Y. F. and WANG, Z. L. Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotrionics. Nano Letters, 7, 2499-2505(2007) [5] FALCONI, C. Piezoelectric nanotransducers. Nano Energy, 59, 730-744(2019) [6] ZHANG, Y., LIU, Y., and WANG, Z. L. Fundamental theory of piezotronics. Advanced Materials, 23, 3004-3013(2011) [7] PENG, Y. Y., QUE, M. L., LEE, H. E., BAO, R. R., WANG, X. D., LU, J. F., YUAN, Z. Q., LI, X. Y., TAO, J., SUN, J. L., ZHAI, J. Y., LEE, K. J., and PAN, C. F. Achieving high-resolution pressure mapping via flexible GaN/ZnO nanowire LEDs array by piezo-phototronic effect. Nano Energy, 58, 633-640(2019) [8] JIANG, C. Y., JING, L., HUANG, X., LIU, M. M., DU, C. H., LIU, T., PU, X., HU, W. G., and WANG, Z. L. Enhanced solar cell conversion e-ciency of InGaN/GaN multiple quantum wells by piezo-phototronic effect. ACS Nano, 11, 9405-9412(2017) [9] ZHANG, Y., YANG, Y., and WANG, Z. L. Piezo-phototronics effect on nano/microwire solar cells. Energy and Environmental Science, 5, 6850-6856(2012) [10] WU, W. Z. and WANG, Z. L. Piezotronic nanowire-based resistive switches as programmable electromechanical memories. Nano Letters, 11, 2779-2785,(2011) [11] PIERRET, R. F. Semiconductor Fundamentals, Addison-Wesley, New Jersey (1988) [12] SU, Z., LI, H. P., CHEN, P., HU, S. Y., and YAN, Y. W. Novel heterostructured InN/TiO2 submicron fibers designed for high performance visible-light-driven photocatalysis. Catalysis Science and Technology, 7, 5105(2017) [13] ZHANG, Y. M., HU, G. W., ZHANG, Y., LUCY, L., MORTENN, W., and WANG, Z. L. High performance piezotronic devices based on non-uniform strain. Nano Energy, 60, 649-655(2019) [14] FENG, X. Y., ZHANG, Y., and WANG, Z. L. Theoretical study of piezotronic heterojunction. Science China Technological Sciences, 56, 2615-2621(2013) [15] LAN, F. F., CHEN, Y. D., ZHU, J. Q., LU, Q. X., JIANG, C., HAO, S. F., CAO, X., WANG, N., and WANG, Z. L. Piezotronically enhanced detection of protein kinases at ZnO micro/nanowire heterojunctions. Nano Energy, 69, 104330(2020) [16] ZHU, L. P. and WANG, Z. L. Piezotronic effect on Rashba spin-orbit coupling based on MAPbI3/ZnO heterostructures. Applied Physics Letters, 117, 071601(2020) [17] CHEN, L., WANG, B. Y., DONG, J. Q., GAO, F. L., ZHENG, H. W., HE, M., and WANG, X. F. Insights into the pyro-phototronic effect in p-Si/n-ZnO nanowires heterojunction toward high-performance near-infrared photosensing. Nano Energy, 78, 105260(2020) [18] WANG, Q. Y., QIU, Y., YANG, D. C., LI, B., ZHANG, X. T., TANG, Y., and ZHANG, H. Q. Improvement in piezoelectric performance of a ZnO nanogenerator by modulating interface engineering of CuO-ZnO heterojunction. Applied Physics Letters, 113, 053901(2018) [19] HUANG, K. and HAN, R. Q. The Physical Basis of Semiconductors, The Science Publishing Company, Beijing (2015) [20] YANG, W. L., LIU, J. X., XU, Y. L., and HU, Y. T. A full-coupling model of PN junctions based on the global-domain carrier motions with inclusion of the two metal/semiconductor contacts at endpoints. Applied Mathematics and Mechanics (English Edtion), 41(6), 845-858(2020) https://doi.org/10.1007/s10483-020-2617-9 [21] YANG, W. L., LIU, J. X., and HU, Y. T. Mechanical tuning methodology on the barrier conflguration near a piezoelectric PN interface and the regulation mechanism on I-V characteristics of the junction. Nano Energy, 81, 105581(2021) [22] LUO, Y. X., ZHANG, C. L., CHEN, W. Q., and YANG, J. S. An analysis of PN junctions in piezoelectric semiconductors. Journal of Applied Physics, 122, 204502(2017) [23] GUO, M. K., LU, C. S., QIN, G. S., and ZHAO, M. H. Temperature gradient-dominated electrical behaviours in a piezoelectric PN junction. Journal of Electronic Materials, 50, 947-953(2021) [24] GUO, M. K., LI, Y., QIN, G. S., and ZHAO, M. H. Nonlinear solutions of PN junctions of piezoelectric semiconductors. Acta Mechanica, 230, 1825-1841(2019) [25] CHENG, R. R., ZHANG, C. L., CHEN, W. Q., and YANG, J. S. Temperature effects on PN junctions in piezoelectric semiconductor fibers with thermoelastic and pyroelectric couplings. Journal of Electronic Materials, 49, 3140-3148(2020) [26] REN, C., WANG, K. F., and WANG, B. L. Analysis of piezoelectric PN homojunction and heterojunction considering flexoelectric effect and strain gradient. Journal of Physics D:Applied Physics, 54, 495102(2021) [27] FANG, K., LI, P., and QIAN, Z. H. Static and dynamic analysis of a piezoelectric semiconductor cantilever under consideration of flexoelectricity and strain gradient elasticity. Acta Mechanica Solida Sinica, 34, 673-686(2021) [28] ZHAO, M. H., LIU, X., FAN, C. Y., LU, C. S., and WANG, B. B. Theoretical analysis on the extension of a piezoelectric semi-conductor nanowire:effects of flexoelectricity and strain gradient. Journal of Applied Physics, 127, 085707(2020) [29] QU, Y. L., JIN, F., and YANG, J. S. Effects of mechanical fields on mobile charges in a composite beam of flexoelectric dielectrics and semiconductors. Journal of Applied Physics, 127, 194502(2020) [30] QU, Y. L., JIN, F., and YANG, J. S. Bending of a flexoelectric semiconductors plate. Acta Mechanica Solida Sinica (2022) https://doi.org/10.1007/s10338-021-00296-y [31] SUN, L., ZHU, L. F., ZHANG, C. L., CHEN, W. Q., and WANG, Z. L. Mechanical manipulation of silicon-based schottky diodes via flexoelectricity. Nano Energy, 83, 105855(2021) [32] WANG, L. F., LIU, S. H., FENG, X. L., ZHANG, C. L., ZHU, L. P., ZHAI, J. Y., QIN, Y., and WANG, Z. L. Flexoelectronics of centrosymmetric semiconductors. Nature Nanotechnology, 15, 661-667(2020) [33] ZHANG, J. Small-scale effects on the piezopotential properties of tapered gallium nitride nanowires:the synergy between surface and flexoelectric effects. Nano Energy, 79, 105489(2021) [34] LEE, K. Y., BAE, J., KIM, S. M., LEE, J. H., YOON, G. C., GUPTA, M. K., KIM, S. J., KIM, H., PARK, J. J., and KIM, S. W. Depletion width engineering via surface modification for high performance semiconducting piezoelectric nanogenerators. Nano Energy, 8, 165-173(2014) [35] GAO, Y. F. and WANG, Z. L. Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Letters, 9, 1103-1110(2009) [36] YANG, W. L., HU, Y. T., and PAN, E. Tuning electronic energy band in a piezoelectric semiconductor rod via mechanical loading. Nano Energy, 66, 104147(2019) [37] ZHANG, C. L., LUO, Y. X., CHENG, R. R., and YANG, J. S. Electromechanical fields in piezoelectric semiconductor nanofibers under an axial force. MRS Advances, 2, 3421-3426(2017) [38] LIU, E. K., ZHU, B. S., and LUO, J. S. The Physics of Semiconductors, Publishing House of Electronics Industry, Beijing (2014) [39] SZE, S. M. and KWOK, K. N. Physics of Semiconductor Devices, John Wiley&Sons, New Jersey (2007) [40] OHTOMOA, A. and KAWASAKI, M. Structure and optical properties of ZnO/Mg0:2Zn0:8O superlattices. Applied Physics Letters, 75, 980-982(1999) [41] FANG, Y. J., SHA, J., WANG, Z. L., WAN, Y. T., XIA, W. W., and WANG, Y. W. Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays. Applied Physics Letters, 98, 033103(2011) |