[1] BRINCKER, R., ZHANG, L. M., and ANDERSEN, P. Modal identification of output-only systems using frequency domain decomposition. Smart Materials and Structures, 10(3), 441–445(2001) [2] WANG, J., DU, G., ZHU, Z., SHEN, C. Q., and HE, Q. B. Fault diagnosis of rotating machines based on the EMD manifold. Mechanical Systems and Signal Processing, 135, 106443(2020) [3] WANG, L. and SHAO, Y. Fault feature extraction of rotating machinery using a reweighted complete ensemble empirical mode decomposition with adaptive noise and demodulation analysis. Mechanical Systems and Signal Processing, 138, 106545(2020) [4] FELDMAN, M. Hilbert transform in vibration analysis. Mechanical Systems and Signal Processing, 25(3), 735–802(2011) [5] DRAGOMIRETSKIY, K. and ZOSSO, D. Variational mode decomposition. IEEE Transactions on Signal Processing, 62(3), 531–544(2014) [6] BARBOSH, M., SINGH, P., and SADHU, A. Empirical mode decomposition and its variants: a review with applications in structural health monitoring. Smart Materials and Structures, 29(9), 093001(2020) [7] LEI, Y. G., YANG, B., JIANG, X. W., JIA, F., LI, N. P., and NANDI, A. K. Applications of machine learning to machine fault diagnosis: a review and roadmap. Mechanical Systems and Signal Processing, 138, 106587(2020) [8] WANG, R. H., CHENCHO, AN, S. J., LI, J., LI, L., HAO, H., and LIU, W. Q. Deep residual network framework for structural health monitoring. Structural Health Monitoring — An International Journal, 20(4), 1443–1461(2021) [9] ZHANG, L. W., LIN, J., LIU, B., ZHANG, Z. C., YAN, X. H., and WEI, M. H. A review on deep learning applications in prognostics and health management. IEEE Access, 7, 162415–162438(2019) [10] SHARMA, A., AMARNATH, M., and KANKAR, P. K. Feature extraction and fault severity classification in ball bearings. Journal of Vibration and Control, 22(1), 176–192(2016) [11] RAISSI, M., YAZDANI, A., and KARNIADAKIS, G. E. Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science, 367(6481), 1026(2020) [12] CHUANCANG, D., MING, Z., and JING, L. Sparse feature extraction based on periodical convolutional sparse representation for fault detection of rotating machinery. Measurement Science and Technology, 32, 015008(2021) [13] YANG, Q., MENG, S., ZHONG, Z., XIE, W. H., GUO, Z. Y., JIN, H., and ZHANG, X. H. Big data in mechanical research: potentials, applications and challenges. Advances in Mechanics, 50(1), 406–449(2020) [14] MINDHAM, D. A., TYCH, W., and CHAPPELL, N. A. Extended state dependent parameter modelling with a data-based mechanistic approach to nonlinear model structure identification. Environmental Modelling and Software, 104, 81–93(2018) [15] HOSSAIN, M. S., ONG, Z. C., ISMAIL, Z., NOROOZI, S., and KHOO, S. Y. Artificial neural networks for vibration based inverse parametric identifications: a review. Applied Soft Computing, 52, 203–219(2017) [16] LAI, Z. and NAGARAJAIAH, S. Semi-supervised structural linear/nonlinear damage detection and characterization using sparse identification. Structural Control and Health Monitoring, 26(3), e2306(2019) [17] WU, J., WU, C. Y., CAO, S., OR, S. W., DENG, C., and SHAO, X. Y. Degradation data-driven time-to-failure prognostics approach for rolling element bearings in electrical machines. IEEE Transactions on Industrial Electronics, 66(1), 529–539(2019) [18] ZHANG, B., ZHANG, L., and XU, J. Degradation feature selection for remaining useful life prediction of rolling element bearings. Quality and Reliability Engineering International, 32(2), 547–554(2016) [19] ZHU, J., CHEN, N., and PENG, W. Estimation of bearing remaining useful life based on multiscale convolutional neural network. IEEE Transactions on Industrial Electronics, 66(4), 3208–3216(2019) [20] SHEPPARD, J. W., KAUFMAN, M. A., and WILMERING, T. J. IEEE standards for prognostics and health management. IEEE Aerospace and Electronic Systems Magazine, 24(9), 34–41(2009) [21] FAN, J. J., YUNG, K. C., and PECHT, M. Physics-of-failure-based prognostics and health management for high-power white light-emitting diode lighting. IEEE Transactions on Device and Materials Reliability, 11(3), 407–416(2011) [22] PECHT, M. and CU, J. Physics-of-failure-based prognostics for electronic products. Transactions of the Institute of Measurement and Control, 31(3-4), 309–322(2009) [23] ZHAO, R., YAN, R., CHEN, Z. H., MAO, K. Z., WANG, P., and GAO, R. X. Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing, 115, 213–237(2019) [24] LAREDO, D., CHEN, Z., SCHÜTZE, O., and SUN, J. Q. A neural network-evolutionary computational framework for remaining useful life estimation of mechanical systems. Neural Networks, 116, 178–187(2019) [25] TANG, Z., BO, L., LIU, X. F., and WEI, D. P. An autoencoder with adaptive transfer learning for intelligent fault diagnosis of rotating machinery. Measurement Science and Technology, 32, 055110(2021) [26] YE, Z. and YU, J. B. Deep morphological convolutional network for feature learning of vibration signals and its applications to gearbox fault diagnosis. Mechanical Systems and Signal Processing, 161, 107984(2021) [27] CAI, B. P., SHAO, X. Y., LIU, Y. H., KONG, X. D. WANG, H. F., XU, H. Q., and GE, W. F. Remaining useful life estimation of structure systems under the influence of multiple causes: subsea pipelines as a case study. IEEE Transactions on Industrial Electronics, 67(7), 5737–5747(2020) [28] QIN, Y., XIANG, S., CHAI, Y., and CHEN, H. Z. Macroscopic-microscopic attention in LSTM networks based on fusion features for gear remaining life prediction. IEEE Transactions on Industrial Electronics, 67(12), 10865–10875(2020) [29] MA, M. and MAO, Z. Deep-convolution-based LSTM network for remaining useful life prediction. IEEE Transactions on Industrial Informatics, 17(3), 1658–1667(2021) [30] KARNIADAKIS, G. E., KEVREKIDIS, I. G., LU, L., PERDIKARIS, P., WANG, S. F., and YANG, L. Physics-informed machine learning. Nature Reviews Physics, 3(6), 422–440(2021) [31] ZHANG, R., LIU, Y., and SUN, H. Physics-guided convolutional neural network (PHYCNN) for data-driven seismic response modeling. Engineering Structures, 215, 110704(2020) [32] PANG, G., D’ELIA, M., PARKS, M., and KARNIADAKIS, G. E. nPINNs: nonlocal physicsinformed neural networks for a parametrized nonlocal universal Laplacian operator: algorithms and applications. Journal of Computational Physics, 422, 109760(2020) [33] RAISSI, M., PERDIKARIS, P., and KARNIADAKIS, G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686–707(2019) [34] RAISSI, M. and KARNIADAKIS, G. E. Hidden physics models: machine learning of nonlinear partial differential equations. Journal of Computational Physics, 357, 125–141(2018) [35] KAISER, E., KUTZ, J. N., and BRUNTON, S. L. Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings. Mathematical, Physical, and Engineering Sciences, 474(2219), 20180335(2018) [36] BRUNTON, S. L., PROCTOR, J. L., and KUTZ, J. N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of Sciences, 113(15), 3932(2016) [37] MENG, X., LI, Z., ZHANG, D., and KARNIADAKIS, G. E. PPINN: parareal physics-informed neural network for time-dependent PDEs. Computer Methods in Applied Mechanics and Engineering, 370, 113250(2020) [38] MENG, X. and KARNIADAKIS, G. E. A composite neural network that learns from multi-fidelity data: application to function approximation and inverse PDE problems. Journal of Computational Physics, 401, 109020(2020) [39] RUDY, S. H., BRUNTON, S. L., PROCTOR, J. L., and KUTZ, J. N. Data-driven discovery of partial differential equations. Science Advances, 3(4), e1602614(2017) [40] RAISSI, M., PERDIKARIS, P., and KARNIADAKIS, G. E. Multistep neural networks for data-driven discovery of nonlinear dynamical systems. arXiv (2018) https://doi.org/10.48550/ arXiv.1801.01236 [41] QIN, T., WU, K. L., and XIU, D. B. Data driven governing equations approximation using deep neural networks. Journal of Computational Physics, 395, 620–635(2019) [42] WU, K. and XIU, D. Numerical aspects for approximating governing equations using data. Journal of Computational Physics, 384, 200–221(2019) [43] CHEN, R. T. Q., RUBANOVA, Y., BETTENCOURT, J., and DUVENAUD, D. Neural Ordinary Differential Equations, Curran Associates Inc., Montréal, Canada (2018) [44] DUPONT, E., DOUCET, A., and TEH, Y. Augmented neural ODEs. arXiv (2019) https://doi.org/10.48550/arXiv.1904.01681 [45] LAI, Z. L., MYLONAS, C., NAGARAJAIAH, S., and CHATZI, E. Structural identification with physics-informed neural ordinary differential equations. Journal of Sound and Vibration, 508, 116196(2021) [46] MASSAROLI, S., POLI, M., PARK, J., YAMASHITA, A., and ASAMA, H. Dissecting neural ODEs. arXiv (2020) https://doi.org/10.48550/arXiv.2002.08071 [47] QIN, T., CHEN, Z., JAKEMAN, J. D., and XIU, D. B. Data-driven learning of non-autonomous systems. arXiv (2020) https://doi.org/10.48550/arXiv.2006.02392 |