Applied Mathematics and Mechanics (English Edition) ›› 2023, Vol. 44 ›› Issue (1): 21-34.doi: https://doi.org/10.1007/s10483-023-2945-6
• Articles • Previous Articles Next Articles
Jun JIN1,2, Ningdong HU1,2, Hongping HU1,2
Received:
2022-08-22
Revised:
2022-10-11
Online:
2023-01-01
Published:
2022-12-24
Contact:
Hongping HU, E-mail: huhp@hust.edu.cn
Supported by:
2010 MSC Number:
Jun JIN, Ningdong HU, Hongping HU. Size effects on the mixed modes and defect modes for a nano-scale phononic crystal slab. Applied Mathematics and Mechanics (English Edition), 2023, 44(1): 21-34.
[1] MEHANEY, A. Phononic crystal as a neutron detector. Ultrasonics, 93, 37–42(2019) [2] KHELIF, A., CHOUJAA, A., BENCHABANE, S., DJAFARI-ROUHANI, B., and LAUDE, V. Guiding and bending of acoustic waves in highly confined phononic crystal waveguides. Applied Physics Letters, 84, 4400–4402(2004) [3] WU, T. T., WANG, W. S., SUN, J. H., HSU, J. C., and CHEN, Y. Y. Utilization of phononiccrystal reflective gratings in a layered surface acoustic wave device. Applied Physics Letters, 94, 101913(2009) [4] LI, Z. N., WANG, Y. Z., and WANG, Y. S. Tunable three-dimensional nonreciprocal transmission in a layered nonlinear elastic wave metamaterial by initial stresses. Applied Mathematics and Mechanics (English Edition), 43(2), 167–184(2022) https://doi.org/10.1007/s10483-021-2808-9 [5] CIAMPA, F., MANKAR, A., and MARINI, A. Phononic crystal waveguide transducers for nonlinear elastic wave sensing. Scientific Reports, 7, 1–8(2017) [6] HÅKANSSON, A., SÁCHEZ-DEHESA, J., and SANCHIS, L. Acoustic lens design by genetic algorithms. Physical Review B, 70, 214302(2004) [7] YANG, S., PAGE, J. H., LIU, Z., COWAN, M. L., CHAN, C. T., and SHENG, P. Focusing of sound in a 3D phononic crystal. Physical Review Letters, 93, 024301(2004) [8] SUKHOVICH, A., MERHEB, B., MURALIDHARAN, K., VASSEUR, J., PENNEC, Y., DEYMIER, P. A., and PAGE, J. Experimental and theoretical evidence for subwavelength imaging in phononic crystals. Physical Review Letters, 102, 154301(2009) [9] ZHAO, C. Y., ZHENG, J. Y., SANG, T., WANG, L. C., YI, Q., and WANG, P. Computational analysis of phononic crystal vibration isolators via FEM coupled with the acoustic black hole effect to attenuate railway-induced vibration. Construction Building Materials, 283, 122802(2021) [10] QIANG, C. X., HAO, Y. X., ZHANG, W., LI, J. Q., YANG, S. W., and CAO, Y. T. Bandgaps and vibration isolation of local resonance sandwich-like plate with simply supported overhanging beam. Applied Mathematics and Mechanics (English Edition), 42(11), 1555–1570(2021) https://doi.org/10.1007/s10483-021-2790-7 [11] LI, J., SHEN, C., HUANG, T. J., and CUMMER, S. A. Acoustic tweezer with complex boundaryfree trapping and transport channel controlled by shadow waveguides. Science Advances, 7, eabi5502(2021) [12] JIANG, X., SHI, C., LI, Z., WANG, S., WANG, Y., YANG, S., LOUIE, S. G., and ZHANG, X. Direct observation of Klein tunneling in phononic crystals. Science, 370, 1447–1450(2020) [13] ZHANG, X. and LIU, Z. Negative refraction of acoustic waves in two-dimensional phononic crystals. Applied Physics Letters, 85, 341–343(2004) [14] HE, H., QIU, C., YE, L., CAI, X., FAN, X., KE, M., ZHANG, F., and LIU, Z. Topological negative refraction of surface acoustic waves in a Weyl phononic crystal. nature, 560, 61–64(2018) [15] JIN, J., WANG, X., ZHAN, L., and HU, H. Strong quadratic acousto-optic coupling in 1D multilayer phoxonic crystal cavity. Nanotechnology Reviews, 10, 443–452(2021) [16] JIN, J., JIANG, S., HU, H., ZHAN, L., WANG, X., and LAUDE, V. Acousto-optic cavity coupling in 2D phoxonic crystal with combined convex and concave holes. Journal of Applied Physics, 130, 123104(2021) [17] MASRURA, H. M., KAREEKUNNAN, A., LIU, F., RAMARAJ, S. G., ELLROTT, G., HAMMAM, A. M., MURUGANATHAN, M., and MIZUTA, H. Design of graphene phononic crystals for heat phonon engineering. Micromachines, 11, 655(2020) [18] CHAN, J., SAFAVI-NAEINI, A. H., HILL, J. T., MEENEHAN, S., and PAINTER, O. Optimized optomechanical crystal cavity with acoustic radiation shield. Applied Physics Letters, 101, 081115(2012) [19] MACCABE, G. S., REN, H., LUO, J., COHEN, J. D., ZHOU, H., SIPAHIGIL, A., MIRHOSSEINI, M., and PAINTER, O. Nano-acoustic resonator with ultralong phonon lifetime. Science, 370, 840–843(2020) [20] CHAFATINOS, D. L., KUZNETSOV, A. S., ANGUIANO, S., BRUCHHAUSEN, A. E., REYNOSO, A. A., BIERMANN, K., SANTOS, P. V., and FAINSTEIN, A. Polariton-driven phonon laser. Nature Communications, 11, 4552(2020) [21] CUI, K. Y., HUANG, Z. L., WU, N., XU, Q. C., PAN, F., XIONG, J., FENG, X., LIU, F., ZHANG, W., and HUANG, Y. D. Phonon lasing in a hetero optomechanical crystal cavity. Photonics Research, 9, 937–943(2021) [22] MERCADÉ, L., PELKA, K., BURGWAL, R., XUEREB, A., MARTÍNEZ, A., and VERHAGEN, E. Floquet phonon lasing in multimode optomechanical systems. Physical Review Letters, 127, 073601(2021) [23] SAFAVI-NAEINI, A. H., ALEGRE, T. M., CHAN, J., EICHENFIELD, M., WINGER, M., LIN, Q., HILL, J. T., CHANG, D. E., and PAINTER, O. Electromagnetically induced transparency and slow light with optomechanics. nature, 472, 69–73(2011) [24] EICHENFIELD, M., CAMACHO, R., CHAN, J., VAHALA, K. J., and PAINTER, O. A picogramand nanometre-scale photonic-crystal optomechanical cavity. nature, 459, 550–555(2009) [25] EICHENFIELD, M., CHAN, J., CAMACHO, R. M., VAHALA, K. J., and PAINTER, O. Optomechanical crystals. nature, 462, 78–82(2009) [26] ZHENG, C. Y., ZHANG, G. Y., and MI, C. W. On the strength of nanoporous materials with the account of surface effects. International Journal of Engineering Science, 160, 103451(2021) [27] ZHAO, Z. N. and GUO, J. H. Surface effects on a mode-III reinforced nano-elliptical hole embedded in one-dimensional hexagonal piezoelectric quasicrystals. Applied Mathematics and Mechanics (English Edition), 42(5), 625–640(2021) https://doi.org/10.1007/s10483-021-2721-5 [28] ERINGEN, A. C. Linear theory of nonlocal elasticity and dispersion of plane waves. International Journal of Engineering Science, 10, 425–435(1972) [29] MINDLIN, R. D. and ESHEL, N. On first strain-gradient theories in linear elasticity. International Journal of Solids and Structures, 4, 109–124(1968) [30] GURTIN, M. E. and MURDOCH, A. I. A continuum theory of elastic material surfaces. Archive for Rational Mechanics Analysis, 57, 291–323(1975) [31] YANG, F., CHONG, A., LAM, D. C. C., and TONG, P. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 39, 2731–2743(2002) [32] CHEN, A. L. and WANG, Y. S. Size-effect on band structures of nano-scale phononic crystals. Physica E, 44, 317–321(2011) [33] CHEN, A. L., YAN, D. J., WANG, Y. S., and ZHANG, C. Z. Anti-plane transverse waves propagation in nano-scale periodic layered piezoelectric structures. Ultrasonics, 65, 154–164(2016) [34] YAN, D. J., CHEN, A. L., WANG, Y. S., and ZHANG, C. Size-effect on the band structures of the transverse elastic wave propagating in nano-scale periodic laminates. International Journal of Mechanical Sciences, 180, 105669(2020) [35] ZHENG, H., ZHANG, C. Z., WANG, Y. S., SLADEK, J., and SLADEK, V. Band structure computation of in-plane elastic waves in 2D phononic crystals by a meshfree local RBF collocation method. Engineering Analysis with Boundary Elements, 66, 77–90(2016) [36] ZHENG, H., ZHANG, C. Z., WANG, Y. S., SLADEK, J., and SLADEK, V. A meshfree local RBF collocation method for anti-plane transverse elastic wave propagation analysis in 2D phononic crystals. Journal of Computational Physics, 305, 997–1014(2016) [37] ZHENG, H., ZHANG, C. Z., WANG, Y. S., CHEN, W., SLADEK, J., and SLADEK, V. A local RBF collocation method for band structure computations of 2D solid/fluid and fluid/solid phononic crystals. International Journal for Numerical Methods in Engineering, 110, 467–500(2017) [38] ZHENG, H., ZHANG, C. Z., and YANG, Z. S. A local radial basis function collocation method for band structure computation of 3D phononic crystals. Applied Mathematical Modelling, 77, 1954–1964(2020) [39] ZHENG, H., ZHOU, C. B., YAN, D. J., WANG, Y. S., and ZHANG, C. Z. A meshless collocation method for band structure simulation of nano-scale phononic crystals based on nonlocal elasticity theory. Journal of Computational Physics, 408, 109268(2020) [40] QIAN, D. H., WU, J. H., and HE, F. Y. Electro-mechanical coupling band gaps of a piezoelectric phononic crystal Timoshenko nanobeam with surface effects. Ultrasonics, 109, 106225(2021) [41] LIU, W., CHEN, J. W., LIU, Y. Q., and SU, X. Y. Effect of interface/surface stress on the elastic wave band structure of two-dimensional phononic crystals. Physics Letters A, 376, 605–609(2012) [42] ZHEN, N., WANG, Y. S., and ZHANG, C. Bandgap calculation of in-plane waves in nano-scale phononic crystals taking account of surface/interface effects. Physica E: Low-dimensional Systems and Nanostructures, 54, 125–132(2013) [43] ZHEN, N., WANG, Y. S., and ZHANG, C. Surface/interface effect on band structures of nanosized phononic crystals. Mechanics Research Communications, 46, 81–89(2012) [44] LIU, W., LIU, Y. Q., SU, X. Y., and LI, Z. Finite element analysis of the interface/surface effect on the elastic wave band structure of two-dimensional nanosized phononic crystals. International Journal of Applied Mechanics, 6, 1450005(2014) [45] ZHANG, S. Z., HU, Q. Q., and ZHAO, W. J. Surface effect on band structure of magneto-elastic phononic crystal nanoplates subject to magnetic and stress loadings. Applied Mathematics and Mechanics (English Edition), 43(2), 203–218(2022) https://doi.org/10.1007/s10483-022-2806-7 [46] ZHANG, G., GAO, X. L., and DING, S. Band gaps for wave propagation in 2-D periodic composite structures incorporating microstructure effects. Acta Mechanica Sinica, 229, 4199–4214(2018) [47] ZHANG, G. and GAO, X. L. Elastic wave propagation in 3-D periodic composites: band gaps incorporating microstructure effects. Composite Structures, 204, 920–932(2018) [48] JIN, J., HU, N., and HU, H. Investigation of size effect on band structure of 2D nano-scale phononic crystal based on nonlocal strain gradient theory. International Journal of Mechanical Sciences, 219, 107100(2022) [49] ASPELMEYER, M., KIPPENBERG, T. J., and MARQUARDT, F. Cavity optomechanics. Reviews of Modern Physics, 86, 1391–1452(2014) [50] CHAN, J., ALEGRE, T., SAFAVI-NAEINI, A. H., HILL, J. T., KRAUSE, A., GRÖBLACHER, S., ASPELMEYER, M., and PAINTER, O. Laser cooling of a nanomechanical oscillator into its quantum ground state. nature, 478, 89–92(2011) [51] SAFAVI-NAEINI, A. H., ALEGRE, T., CHAN, J., EICHENFIELD, M., WINGER, M., LIN, Q., HILL, J. T., CHANG, D. E., and PAINTER, O. Electromagnetically induced transparency and slow light with optomechanics. nature, 472, 69–73(2011) [52] ERINGEN, A. C. Theory of nonlocal electromagnetic elastic solids. Journal of Mathematical Physics, 14, 733–740(1973) [53] BARRETTA, R., CANADIJA, M., LUCIANO, R., and DE SCIARRA, F. M. Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams. International Journal of Engineering Science, 126, 53–67(2018) [54] ROMANO, G. and BARRETTA, R. Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams. Composites Part B: Engineering, 114, 184–188(2017) [55] LIM, C. W., ZHANG, G., and REDDY, J. N. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. Journal of the Mechanics and Physics of Solids, 78, 298–313(2015) [56] EL-JALLAL, S., OUDICH, M., PENNEC, Y., DJAFARI-ROUHANI, B., LAUDE, V., BEUGNOT, J. C., MARTINEZ, A., ESCALANTE, J. M., and MAKHOUTE, A. Analysis of optomechanical coupling in two-dimensional square lattice phoxonic crystal slab cavities. Physical Review B, 88, 205410(2013) [57] JIANG, S., HU, H. P., and LAUDE, V. Ultra-wide band gap in two-dimensional phononic crystal with combined convex and concave holes. Physica Status Solidi-Rapid Research Letters, 12, 1700317(2018) [58] SHAAT, M. and ABDELKEFI, A. New insights on the applicability of Eringen’s nonlocal theory. International Journal of Mechanical Sciences, 121, 67–75(2017) [59] ESEN, I. Response of a micro-capillary system exposed to a moving mass in magnetic field using nonlocal strain gradient theory. International Journal of Mechanical Sciences, 188, 105937(2020) [60] DJAFARI-ROUHANI, B., EL-JALLAL, S., OUDICH, M., and PENNEC, Y. Optomechanic interactions in phoxonic cavities. AIP Advances, 4, 124602(2014) [61] EL-JALLAL, S., OUDICH, M., PENNEC, Y., DJAFARI-ROUHANI, B., MAKHOUTE, A., ROLLAND, Q., DUPONT, S., and GAZALET, J. Optomechanical interactions in two-dimensional Si and GaAs phoxonic cavities. Journal of Physics: Condensed Matter, 26, 015005(2014) [62] ROLLAND, Q., OUDICH, M., EL-JALLAL, S., DUPONT, S., PENNEC, Y., GAZALET, J., KASTELIK, J. C., LEVEQUE, G., and DJAFARI-ROUHANI, B. Acousto-optic couplings in two-dimensional phoxonic crystal cavities. Applied Physics Letters, 101, 061109(2012) [63] TANG, H. S., LI, L., HU, Y. J., MENG, W. S., and DUAN, K. Vibration of nonlocal strain gradient beams incorporating Poisson’s ratio and thickness effects. Thin-Walled Structures, 137, 377–391(2019) [64] LU, L., GUO, X., and ZHAO, J. Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory. International Journal of Engineering Science, 116, 12–24(2017) |
[1] | Hai QING, Huidiao SONG. Nonlocal stress gradient formulation for damping vibration analysis of viscoelastic microbeam in thermal environment [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(5): 773-786. |
[2] | Xinte WANG, Juan LIU, Biao HU, Bo ZHANG, Huoming SHEN. Wave propagation responses of porous bi-directional functionally graded magneto-electro-elastic nanoshells via nonlocal strain gradient theory [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(10): 1821-1840. |
[3] | Chunyu ZHANG, Biao WANG. Influence of nonlinear spatial distribution of stress and strain on solving problems of solid mechanics [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(9): 1355-1366. |
[4] | Yang ZHENG, Bin HUANG, Lijun YI, Tingfeng MA, Longtao XIE, Ji WANG. Nonlinear thickness-shear vibration of an infinite piezoelectric plate with flexoelectricity based on the method of multiple scales [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(5): 653-666. |
[5] | Chi XU, Yang LI, Mingyue LU, Zhendong DAI. Buckling analysis of functionally graded nanobeams under non-uniform temperature using stress-driven nonlocal elasticity [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(3): 355-370. |
[6] | Jun HONG, Zhuangzhuang HE, Gongye ZHANG, Changwen MI. Size and temperature effects on band gaps in periodic fluid-filled micropipes [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(9): 1219-1232. |
[7] | Jie SU, Hongxia SONG, Liaoliang KE, S. M. AIZIKOVICH. The size-dependent elastohydrodynamic lubrication contact of a coated half-plane with non-Newtonian fluid [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(7): 915-930. |
[8] | Zhangna XUE, Gongqi CAO, Jianlin LIU. Size-dependent thermoelasticity of a finite bi-layered nanoscale plate based on nonlocal dual-phase-lag heat conduction and Eringen's nonlocal elasticity [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(1): 1-16. |
[9] | Zhu SU, Lifeng WANG, Kaipeng SUN, Jie SUN. Transverse shear and normal deformation effects on vibration behaviors of functionally graded micro-beams [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(9): 1303-1320. |
[10] | Shan ZENG, Kaifa WANG, Baolin WANG, Jinwu WU. Vibration analysis of piezoelectric sandwich nanobeam with flexoelectricity based on nonlocal strain gradient theory [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(6): 859-880. |
[11] | Liang ZHAO, Jiajia SUN, Xian WANG, Li ZENG, Chunlei WANG, Yusong TU. System-size effect on the friction at liquid-solid interfaces [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(3): 471-478. |
[12] | Yanqing WANG, Yunfei LIU, J. W. ZU. Nonlinear free vibration of piezoelectric cylindrical nanoshells [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(5): 601-620. |
[13] | Bo ZHOU, Xueyao ZHENG, Zetian KANG, Shifeng XUE. Modeling size-dependent thermo-mechanical behaviors of shape memory polymer Bernoulli-Euler microbeam [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(11): 1531-1546. |
[14] | Licheng MENG, Dajun ZOU, Huan LAI, Zili GUO, Xianzhong HE, Zhijun XIE, Cunfa GAO. Semi-analytic solution of Eringen's two-phase local/nonlocal model for Euler-Bernoulli beam with axial force [J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(12): 1805-1824. |
[15] | A. R. SETOODEH, M. REZAEI, M. R. ZENDEHDEL SHAHRI. Linear and nonlinear torsional free vibration of functionally graded micro/nano-tubes based on modified couple stress theory [J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(6): 725-740. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||