[1] HAN, X. J., DONG, Z. Q., FAN, M. M., LIU, Y., LI, J. H., WANG, Y. F., and ZHANG, S. PH-induced shape-memory polymers. Macromolecular Rapid Communications, 33(12), 1055-1060(2012) [2] LU, H. State diagram of phase transition temperatures and solvent-induced recovery behavior of shape-memory polymer. Journal of Applied Polymer Science, 127(4), 2896-2904(2012) [3] CHEN, Y. C. and LAQOUDAS, D. C. A constitutive theory for shape memory polymers, part II:a linearied model for small deformations. Journal of the Mechanics and Physics of Solids, 56(5), 1766-1778(2008) [4] FANG, L., FANG, T., LIU, X., NI, Y., LU, C., and XU, Z. Precise stimulation of near-infrared light responsive shape-memory polymer composites using upconversion particles with photothermal capability. Composites Science and Technology, 152, 190-197(2017) [5] BROWN, R., SINQH, K., and KHAN, F. Fabrication and vibration characterization of electrically triggered shape memory polymer beams. Polymer Testing, 61, 74-82(2017) [6] SCHMIDT, A. M. Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromolecular Rapid Communications, 27(14), 1168-1172(2006) [7] LIU, Y., DU, H., LIU, L., and LENG, J. Shape memory polymers and their composites in aerospace applications:a review. Smart Materials and Structures, 23(2), 023001(2014) [8] LENFLEIN, A., BEHL, M., HIEBL, B., and WISCHKE, C. Shape-memory polymers as a technology platform for biomedical applications. Progress in Polymer Science, 7(3), 357-379(2010) [9] HU, J., ZHU, Y., HUANG, H., and LU, J. Recent advances in shape-memory polymers:structure, mechanism, functionality, modeling and applications. Progress in Polymer Science, 37(12), 1720-1763(2012) [10] LEE, J. H., HINCHET, R., and KIM, S. Shape memory polymer-based self-healing triboelectric nanogenerator. Energy and Environmental Science, 8(12), 3605-3613(2015) [11] FELTON, S., TOLLEV, M., DEMAINE, E., RUS, D., and WOOD, R. A method for building self-folding machines. Science, 345(6197), 644-646(2014) [12] LIU, Y., GALL, K., DUNN, M. L., and MCLUSKEY, P. Thermomechanical recovery couplings of shape memory polymers in flexure. Smart Materials and Structures, 12(6), 947-954(2003) [13] TOBUSHI, H., HAYASHI, S., HOSHIO, K., and EJIRI, Y. Shape recovery and irrecoverable strain control in polyurethane shape-memory polymer. Science and Technology of Advanced Materials, 9(1), 015009(2008) [14] GHOSH, P., REDDDY, J. N., and SRINIVASA, A. R. Development and implementation of a beam theory model for shape memory polymers. International Journal of Solids and Structures, 50(3), 595-608(2013) [15] GHOSH, P. and SRINIVASA, A. R. A two-network thermomechanical model of a shape memory polymer. International Journal of Engineering Science, 49(9), 823-838(2011) [16] BAQHANI, M., MOHAMMADI, H., and NAQHDABADI, R. An analytical solution for shapememory-polymer Euler-Bernoulli beams under bending. International Journal of Mechanical Sciences, 84, 84-90(2014) [17] BAQHANI, M., NAQHDABADI, R., ARQHAVANI, J., and SOHRABQOUR, S. A constitutive model for shape memory polymers with application to torsion of prismatic bars. Journal of Intelligent Material Systems and Structures, 23(2), 107-116(2012) [18] BAQHANI, M. and TAHERI, A. An analytic investigation on behavior of smart devices consisting of reinforced shape memory polymer beams. Journal of Intelligent Material Systems and Structures, 26(11), 1385-1394(2014) [19] BAQHANI, M., NAQHDABADI, R., ARQHAVANI, J., and SOHRABQOUR, S. A thermodynamically-consistent 3D constitutive model for shape memory polymers. International Journal of Plasticity, 35, 13-30(2012) [20] KONG, D. and XIAO, X. High cycle-life shape memory polymer at high temperature. Scientific Reports, 6(1), 33610(2016) [21] PRATHUMRAT, P., TIPTIPAKORN, S., and RIMDUSIT, S. Multiple-shape memory polymers from benzoxazine-urethane copolymers. Smart Materials and Structures, 26(6), 065025(2017) [22] EISENHAURE, J. D., RHEE, S. I., AlOKAILY, A. M., CARLSON, A., FERREIRA, P. M., and KIM, S. The use of shape memory polymers for MEMS assembly. Journal of Microelectromechanical Systems, 25(1), 69-77(2016) [23] ZAINAL, M. A., AHMAD, A., and MOHAMED, M. S. Frequency-controlled wireless shape memory polymer microactuator for drug delivery application. Biomedical Microdevices, 19(1), 8(2017) [24] ZHOU, S., ZHANG, W., ZOU, Y., OU, B., ZHANG, Y., and WANG, C. Piezoelectric-driven selfassembling micro air vehicle with bionic reciprocating wings. Electronics Letters, 54(9), 551-552(2018) [25] YANG, F., CHONG, A. C. M., LAM, D. C. C., and TONG, P. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 39(10), 2731-2743(2002) [26] ZHOU, B., LIU, Y., and LENG, J. A macro-mechanical constitutive model for shape memory polymer. Science China Physics, Mechanics, and Astronomy, 53(12), 2266-2273(2010) |